Showing 22 open source projects for "best python programming projects"

View related business solutions
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 1
    Best-of Machine Learning with Python

    Best-of Machine Learning with Python

    A ranked list of awesome machine learning Python libraries

    This curated list contains 900 awesome open-source projects with a total of 3.3M stars grouped into 34 categories. All projects are ranked by a project-quality score, which is calculated based on various metrics automatically collected from GitHub and different package managers. If you like to add or update projects, feel free to open an issue, submit a pull request, or directly edit the projects.yaml. Contributions are very welcome! General-purpose machine learning and deep learning...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Pyro

    Pyro

    Deep universal probabilistic programming with Python and PyTorch

    Pyro is a flexible, universal probabilistic programming language (PPL) built on PyTorch. It allows for expressive deep probabilistic modeling, combining the best of modern deep learning and Bayesian modeling. Pyro is centered on four main principles: Universal, Scalable, Minimal and Flexible. Pyro is universal in that it can represent any computable probability distribution. It scales easily to large datasets with minimal overhead, and has a small yet powerful core of composable...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    TPOT

    TPOT

    A Python Automated Machine Learning tool that optimizes ML

    Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming. TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Toloka-Kit

    Toloka-Kit

    Toloka-Kit is a Python library for working with Toloka API

    Toloka-Kit is a Python library for working with Toloka API. The API allows you to build scalable and fully automated human-in-the-loop ML pipelines, and integrate them into your processes. The toolkit makes integration easier. You can use it with Jupyter Notebooks. Support for all common Toloka use cases: creating projects, adding pools, uploading tasks, and so on.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 5
    Aider

    Aider

    Aider is AI pair programming in your terminal

    Aider is an open-source AI pair programming tool that runs directly in your terminal, allowing developers to collaborate with LLMs as if they were coding alongside a senior engineer. It maps your entire codebase to provide deep context, making it effective for both small scripts and large, complex projects. Aider supports leading cloud models like Claude 3.7 Sonnet, DeepSeek R1, OpenAI’s o1/o3/GPT-4o, as well as local LLMs for privacy-conscious workflows. Its Git integration ensures every...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 6
    MCP Atlassian

    MCP Atlassian

    MCP server that integrates Confluence and Jira

    The MCP Atlassian server integrates Atlassian products like Confluence and Jira with the Model Context Protocol. It supports both Cloud and Server/Data Center deployments, enabling AI models to interact with these platforms securely. ​
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Langroid

    Langroid

    Harness LLMs with Multi-Agent Programming

    Given the remarkable abilities of recent Large Language Models (LLMs), there is an unprecedented opportunity to build intelligent applications powered by this transformative technology. The top question for any enterprise is: how best to harness the power of LLMs for complex applications? For technical and practical reasons, building LLM-powered applications is not as simple as throwing a task at an LLM system and expecting it to do it. Effectively leveraging LLMs at scale requires a...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    Milvus Bootcamp

    Milvus Bootcamp

    Dealing with all unstructured data, such as reverse image search

    Milvus Bootcamp is a collection of tutorials, examples, and best practices for using Milvus, an open-source vector database designed for AI-powered similarity search and retrieval applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    MLJAR Studio

    MLJAR Studio

    Python package for AutoML on Tabular Data with Feature Engineering

    We are working on new way for visual programming. We developed a desktop application called MLJAR Studio. It is a notebook-based development environment with interactive code recipes and a managed Python environment. All running locally on your machine. We are waiting for your feedback. The mljar-supervised is an Automated Machine Learning Python package that works with tabular data.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • 10
    Generative AI Docs

    Generative AI Docs

    Documentation for Google's Gen AI site - including Gemini API & Gemma

    Generative AI Docs is Google’s official documentation repository for Gemini, Vertex AI, and related generative AI APIs. It contains guides, API references, and examples for developers building applications using Google’s large language models, text-to-image models, embeddings, and multimodal capabilities. The repository includes markdown source files that power the Google AI developer documentation site, as well as sample code snippets in Python, JavaScript, and other languages that...
    Downloads: 16 This Week
    Last Update:
    See Project
  • 11
    Generative AI

    Generative AI

    Sample code and notebooks for Generative AI on Google Cloud

    Generative AI is a comprehensive collection of code samples, notebooks, and demo applications designed to help developers build generative-AI workflows on the Vertex AI platform. It spans multiple modalities—text, image, audio, search (RAG/grounding) and more—showing how to integrate foundation models like the Gemini family into cloud projects. The README emphasises getting started with prompts, datasets, environments and sample apps, making it ideal for both experimentation and...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 12
    cuML

    cuML

    RAPIDS Machine Learning Library

    cuML is a suite of libraries that implement machine learning algorithms and mathematical primitives functions that share compatible APIs with other RAPIDS projects. cuML enables data scientists, researchers, and software engineers to run traditional tabular ML tasks on GPUs without going into the details of CUDA programming. In most cases, cuML's Python API matches the API from scikit-learn. For large datasets, these GPU-based implementations can complete 10-50x faster than their CPU equivalents. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Defang

    Defang

    Defang CLI and sample projects

    ...By leveraging AI-assisted tooling, Defang enables developers to swiftly transition from an idea to a deployed application on their preferred cloud provider. The platform supports multiple programming languages, including Go, JavaScript, and Python, allowing developers to start with sample projects or generate project outlines using natural language prompts. With a single command, Defang builds and deploys applications, handling configurations for computing, storage, load balancing, networking, logging, and security. The Defang Command Line Interface (CLI) facilitates interactions with the platform, offering installation options via shell scripts, Homebrew, Winget, Nix, or direct download. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    OSS-Fuzz Gen

    OSS-Fuzz Gen

    LLM powered fuzzing via OSS-Fuzz

    OSS-Fuzz-Gen is a companion project that helps automatically create or improve fuzz targets for open-source codebases, aiming to increase coverage in OSS-Fuzz with minimal maintainer effort. It analyses a library’s APIs, examples, and tests to propose harnesses that exercise parsers, decoders, or protocol handlers—precisely the code where fuzzing pays off. The system integrates with modern LLM-assisted workflows to draft harness code and then iterates based on build errors or low coverage...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Semantic Kernel

    Semantic Kernel

    Integrate cutting-edge LLM technology quickly and easily into your app

    Semantic Kernel is an open-source SDK that lets you easily combine AI services like OpenAI, Azure OpenAI, and Hugging Face with conventional programming languages like C# and Python. By doing so, you can create AI apps that combine the best of both worlds. To help developers build their own Copilot experiences on top of AI plugins, we have released Semantic Kernel, a lightweight open-source SDK that allows you to orchestrate AI plugins. With Semantic Kernel, you can leverage the same AI orchestration patterns that power Microsoft 365 Copilot and Bing in your own apps, while still leveraging your existing development skills and investments.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Qwen2.5-Coder

    Qwen2.5-Coder

    Qwen2.5-Coder is the code version of Qwen2.5, the large language model

    Qwen2.5-Coder, developed by QwenLM, is an advanced open-source code generation model designed for developers seeking powerful and diverse coding capabilities. It includes multiple model sizes—ranging from 0.5B to 32B parameters—providing solutions for a wide array of coding needs. The model supports over 92 programming languages and offers exceptional performance in generating code, debugging, and mathematical problem-solving. Qwen2.5-Coder, with its long context length of 128K tokens, is...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 17
    ekho

    ekho

    Chinese text-to-speech engine

    ekho is a project with relatively sparse documentation, but from the repository it appears to be a small-scale tool for audio processing and playback, possibly with features for speech synthesis or manipulation. The repo includes scripts and configuration files suggesting interactions with media/audio handling libraries. Because of limited README detail, it seems targeted at users comfortable reading and modifying code, rather than end users expecting polished UIs. The code structure implies...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 18
    gplearn

    gplearn

    Genetic Programming in Python, with a scikit-learn inspired API

    gplearn implements Genetic Programming in Python, with a scikit-learn-inspired and compatible API. While Genetic Programming (GP) can be used to perform a very wide variety of tasks, gplearn is purposefully constrained to solving symbolic regression problems. This is motivated by the scikit-learn ethos, of having powerful estimators that are straightforward to implement.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Apache MXNet (incubating)

    Apache MXNet (incubating)

    A flexible and efficient library for deep learning

    Apache MXNet is an open source deep learning framework designed for efficient and flexible research prototyping and production. It contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations. On top of this is a graph optimization layer, overall making MXNet highly efficient yet still portable, lightweight and scalable.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Tensorpack

    Tensorpack

    A Neural Net Training Interface on TensorFlow, with focus on speed

    ...Your training can probably gets faster if written with Tensorpack. Scalable data-parallel multi-GPU / distributed training strategy is off-the-shelf to use. Squeeze the best data loading performance of Python with tensorpack.dataflow. Symbolic programming (e.g. tf.data) does not offer the data processing flexibility needed in research. Tensorpack squeezes the most performance out of pure Python with various auto parallelization strategies. There are too many symbolic function wrappers already. Tensorpack includes only a few common layers. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    DIGITS

    DIGITS

    Deep Learning GPU training system

    The NVIDIA Deep Learning GPU Training System (DIGITS) puts the power of deep learning into the hands of engineers and data scientists. DIGITS can be used to rapidly train the highly accurate deep neural network (DNNs) for image classification, segmentation and object detection tasks. DIGITS simplifies common deep learning tasks such as managing data, designing and training neural networks on multi-GPU systems, monitoring performance in real-time with advanced visualizations, and selecting...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    GT NLP Class

    GT NLP Class

    Course materials for Georgia Tech CS 4650 and 7650

    This repository contains lecture notes, slides, assignments, and code for a university-level Natural Language Processing course. It spans core NLP topics such as language modeling, sequence tagging, parsing, semantics, and discourse, alongside modern machine learning methods used to solve them. Students work through programming exercises and problem sets that build intuition for both classical algorithms (like HMMs and CRFs) and neural approaches (like word embeddings and sequence models)....
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next