Showing 1141 open source projects for "using"

View related business solutions
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • 1

    rpackage conjurer

    Synthetic data generation using R

    Builds synthetic data applicable across multiple domains. This package also provides flexibility to control data distribution to make it relevant to many industry examples.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    DeepSDF

    DeepSDF

    Learning Continuous Signed Distance Functions for Shape Representation

    DeepSDF is a deep learning framework for continuous 3D shape representation using Signed Distance Functions (SDFs), as presented in the CVPR 2019 paper DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation by Park et al. The framework learns a continuous implicit function that maps 3D coordinates to their corresponding signed distances from object surfaces, allowing compact, high-fidelity shape modeling.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    PyTorch Natural Language Processing

    PyTorch Natural Language Processing

    Basic Utilities for PyTorch Natural Language Processing (NLP)

    ...PyTorch-NLP comes with pre-trained embeddings, samplers, dataset loaders, metrics, neural network modules and text encoders. It’s open-source software, released under the BSD3 license. With your batch in hand, you can use PyTorch to develop and train your model using gradient descent. For example, check out this example code for training on the Stanford Natural Language Inference (SNLI) Corpus. Now you've setup your pipeline, you may want to ensure that some functions run deterministically. Wrap any code that's random, with fork_rng and you'll be good to go. Now that you've computed your vocabulary, you may want to make use of pre-trained word vectors to set your embeddings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    nGraph

    nGraph

    nGraph has moved to OpenVINO

    Frameworks using nGraph Compiler stack to execute workloads have shown up to 45X performance boost when compared to native framework implementations. We've also seen performance boosts running workloads that are not included on the list of Validated workloads, thanks to nGraph's powerful subgraph pattern matching. Additionally, we have integrated nGraph with PlaidML to provide deep learning performance acceleration on Intel, nVidia, & AMD GPUs. nGraph Compiler aims to accelerate developing AI workloads using any deep learning framework and deploying to a variety of hardware targets. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    Jarvis

    Jarvis

    Personal Assistant for Linux and macOS

    ...Run Jarvis from anywhere by command jarvis. You can start by typing help within the Jarvis command line to check what Jarvis can do for you. Plugins may be modified using the decorators @alias, @require and @complete. These special decorators may be used in any order or several times.Not all plugins are compatible with every system. To specify compatibility constraints, use the require-feature.
    Downloads: 173 This Week
    Last Update:
    See Project
  • 6
    Chatito

    Chatito

    Dataset generation for AI chatbots, NLP tasks

    Chatito is a tool that helps generate datasets for training and validating chatbot models using a simple domain-specific language (DSL).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    NiftyNet

    NiftyNet

    An open-source convolutional neural networks platform for research

    ...NiftyNet is a TensorFlow-based open-source convolutional neural networks (CNNs) platform for research in medical image analysis and image-guided therapy. NiftyNet’s modular structure is designed for sharing networks and pre-trained models. Using this modular structure you can get started with established pre-trained networks using built-in tools. Adapt existing networks to your imaging data. Quickly build new solutions to your own image analysis problems. NiftyNet currently supports medical image segmentation and generative adversarial networks. NiftyNet is not intended for clinical use.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    PyTorch-BigGraph

    PyTorch-BigGraph

    Generate embeddings from large-scale graph-structured data

    PyTorch-BigGraph (PBG) is a system for learning embeddings on massive graphs—think billions of nodes and edges—using partitioning and distributed training to keep memory and compute tractable. It shards entities into partitions and buckets edges so that each training pass only touches a small slice of parameters, which drastically reduces peak RAM and enables horizontal scaling across machines. PBG supports multi-relation graphs (knowledge graphs) with relation-specific scoring functions, negative sampling strategies, and typed entities, making it suitable for link prediction and retrieval. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    MatchZoo

    MatchZoo

    Facilitating the design, comparison and sharing of deep text models

    ...Make use of MatchZoo customized loss functions and evaluation metrics. Initialize the model, fine-tune the hyper-parameters. Generate pair-wise training data on-the-fly, evaluate model performance using customized callbacks on validation data. MatchZoo is dependent on Keras and Tensorflow.
    Downloads: 0 This Week
    Last Update:
    See Project
  • HOA Software Icon
    HOA Software

    Smarter Community Management Starts Here

    Simplify HOA management with software that handles everything from financials to communication.
    Learn More
  • 10
    Spotlight

    Spotlight

    Deep recommender models using PyTorch

    Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various pointwise and pairwise ranking losses), representations (shallow factorization representations, deep sequence models), and utilities for fetching (or generating) recommendation datasets, it aims to be a tool for rapid exploration and prototyping of new recommender models. Spotlight offers a slew of popular datasets, including Movielens 100K, 1M,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    DCVGAN

    DCVGAN

    DCVGAN: Depth Conditional Video Generation, ICIP 2019.

    ...The proposed model explicitly uses the information of depth in a video sequence as additional information for a GAN-based video generation scheme to make the model understands scene dynamics more accurately. The model uses pairs of color video and depth video for training and generates a video using the two steps. Generate the depth video to model the scene dynamics based on the geometrical information. To add appropriate color to the geometrical information of the scene, the domain translation from depth to color is performed for each image. This model has three networks in the generator. In addition, the model has two discriminators.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Docker Machine

    Docker Machine

    Machine management for a container-centric world

    ...You can use Machine to create Docker hosts on your local Mac or Windows box, on your company network, in your data center, or on cloud providers like Azure, AWS, or DigitalOcean. Using docker-machine commands, you can start, inspect, stop, and restart a managed host, upgrade the Docker client and daemon, and configure a Docker client to talk to your host. Point the Machine CLI at a running, managed host, and you can run docker commands directly on that host. For example, run docker-machine env default to point to a host called default, follow on-screen instructions to complete env setup, and run docker ps, docker run hello-world, and so forth. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Coach

    Coach

    Enables easy experimentation with state of the art algorithms

    ...Coach supports many state-of-the-art reinforcement learning algorithms, which are separated into three main classes - value optimization, policy optimization, and imitation learning. Coach supports a large number of environments which can be solved using reinforcement learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14

    EmguCv410 Face Recognition Detect

    EmguCv C# OpenCv Cuda Face Recognition + Gender, Emotion, Ethnicity

    ...Emgucv Gender detection Emgucv Emotion detection Emgucv Ethnicity detection Emgucv Face Recognition also includes Pedestrian detection For Live: Face Attendance System, Facial Emotion, Gender Recognition Security Application. Ethnicity/Nationality Recognition Works on IP Camera using RTSP., Video Files ---> After you donate, message or mail at dbinxecod@gmail.com ---> Donate $54--> for Full source code released. Runs on Windows 7 to Windows 10 You can: Add trained images and Reprogram / setup / configure / scale the Face Recognition accuracy! Technical Support is always online, thank you
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Facets

    Facets

    Visualizations for machine learning datasets

    ...Facets contains two robust visualizations to aid in understanding and analyzing machine learning datasets. Get a sense of the shape of each feature of your dataset using Facets Overview, or explore individual observations using Facets Dive. Explore Facets Overview and Facets Dive on the UCI Census Income dataset, used for predicting whether an individual’s income exceeds $50K/yr based on their census data. The census data contains features such as age, education level, and occupation for each individual. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Rainbow

    Rainbow

    Rainbow: Combining Improvements in Deep Reinforcement Learning

    Combining improvements in deep reinforcement learning. Results and pretrained models can be found in the releases. Data-efficient Rainbow can be run using several options (note that the "unbounded" memory is implemented here in practice by manually setting the memory capacity to be the same as the maximum number of timesteps).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    ChainerCV

    ChainerCV

    ChainerCV: a Library for Deep Learning in Computer Vision

    ChainerCV is a collection of tools to train and run neural networks for computer vision tasks using Chainer. In ChainerCV, we define the object detection task as a problem of, given an image, bounding box-based localization and categorization of objects. Bounding boxes in an image are represented as a two-dimensional array of shape (R,4), where R is the number of bounding boxes and the second axis corresponds to the coordinates of bounding boxes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    FID score for PyTorch

    FID score for PyTorch

    Compute FID scores with PyTorch

    ...The weights and the model are exactly the same as in the official Tensorflow implementation, and were tested to give very similar results (e.g. .08 absolute error and 0.0009 relative error on LSUN, using ProGAN generated images). However, due to differences in the image interpolation implementation and library backends, FID results still differ slightly from the original implementation. In difference to the official implementation, you can choose to use a different feature layer of the Inception network instead of the default pool3 layer.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 19
    CakeChat

    CakeChat

    CakeChat: Emotional Generative Dialog System

    ...Thought vector is fed into decoder on each decoding step. Decoder can be conditioned on any categorical label, for example, emotion label or persona id. May be initialized using w2v model trained on your corpus. Embedding layer may be either fixed or fine-tuned along with other weights of the network.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    xLearn

    xLearn

    High performance, easy-to-use, and scalable machine learning (ML)

    xLearn is a high-performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM), all of which can be used to solve large-scale machine learning problems. xLearn is especially useful for solving machine learning problems on large-scale sparse data. Many real-world datasets deal with high dimensional sparse feature vectors like a recommendation system where the number of categories and...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    MIT Deep Learning Book

    MIT Deep Learning Book

    MIT Deep Learning Book in PDF format by Ian Goodfellow

    ...So, I have taken the prints of the HTML content and bound them into a flawless PDF version of the book, as suggested by the website itself. Printing seems to work best printing directly from the browser, using Chrome. Other browsers do not work as well.
    Downloads: 16 This Week
    Last Update:
    See Project
  • 22
    MUSE

    MUSE

    A library for Multilingual Unsupervised or Supervised word Embeddings

    MUSE is a framework for learning multilingual word embeddings that live in a shared space, enabling bilingual lexicon induction, cross-lingual retrieval, and zero-shot transfer. It supports both supervised alignment with seed dictionaries and unsupervised alignment that starts without parallel data by using adversarial initialization followed by Procrustes refinement. The code can align pre-trained monolingual embeddings (such as fastText) across dozens of languages and provides standardized evaluation scripts and dictionaries. By mapping languages into a common vector space, MUSE makes it straightforward to build cross-lingual applications where resources are scarce for some languages. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    TenorSpace.js

    TenorSpace.js

    Neural network 3D visualization framework

    TensorSpace is a neural network 3D visualization framework built using TensorFlow.js, Three.js and Tween.js. TensorSpace provides Keras-like APIs to build deep learning layers, load pre-trained models, and generate a 3D visualization in the browser. From TensorSpace, it is intuitive to learn what the model structure is, how the model is trained and how the model predicts the results based on the intermediate information.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    Fuzzy Ecospace Modelling

    Fuzzy Ecospace Modelling

    FEM allows users to create fuzzy functional groups for use in ecology.

    Fuzzy Ecospace Modelling (FEM) is an R-based program for quantifying and comparing functional disparity, using a fuzzy set theory-based machine learning approach. FEM clusters n-dimensional matrices of functional traits (ecospace matrices – here called the Training Matrix) into functional groups and converts them into fuzzy functional groups using fuzzy discriminant analysis (Lin and Chen 2004 – see main text for more information). Following this, FEM classifies the functional entities from a second matrix (the Test Matrix) into the groups made using the Training Matrix, generating fuzzy membership values for each unit in the Test Matrix. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    NeuralCoref

    NeuralCoref

    Fast Coreference Resolution in spaCy with Neural Networks

    NeuralCoref is a pipeline extension for spaCy 2.1+ which annotates and resolves coreference clusters using a neural network. NeuralCoref is production-ready, integrated in spaCy's NLP pipeline and extensible to new training datasets. For a brief introduction to coreference resolution and NeuralCoref, please refer to our blog post. NeuralCoref is written in Python/Cython and comes with a pre-trained statistical model for English only.
    Downloads: 1 This Week
    Last Update:
    See Project