Showing 1138 open source projects for "using"

View related business solutions
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    FrankMocap

    FrankMocap

    A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

    FrankMocap is a monocular 3D human capture system that estimates body, hand, and optionally face pose from a single RGB image or video. It regresses parametric human models (e.g., SMPL/SMPL-X) directly, producing temporally stable meshes and joint angles suitable for animation or analytics. The pipeline couples a robust 2D keypoint detector with 3D mesh regression networks and priors that keep results anatomically plausible. It can run frame-by-frame or with temporal smoothing, and includes...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    CleanRL

    CleanRL

    High-quality single file implementation of Deep Reinforcement Learning

    CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation with research-friendly features. The implementation is clean and simple, yet we can scale it to run thousands of experiments using AWS Batch. CleanRL is not a modular library and therefore it is not meant to be imported. At the cost of duplicate code, we make all implementation details of a DRL algorithm variant easy to understand, so CleanRL comes with its own pros and cons. You should consider using CleanRL if you want to 1) understand all implementation details of an algorithm's variant or 2) prototype advanced features that other modular DRL libraries do not support (CleanRL has minimal lines of code so it gives you great debugging experience and you don't have to do a lot of subclassing like sometimes in modular DRL libraries).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Minimal text diffusion

    Minimal text diffusion

    A minimal implementation of diffusion models for text generation

    ...The main idea was to retain just enough code to allow training a simple diffusion model and generating samples, remove image-related terms, and make it easier to use. To train a model, run scripts/train.sh. By default, this will train a model on the simple corpus. However, you can change this to any text file using the --train_data argument. Note that you may have to increase the sequence length (--seq_len) if your corpus is longer than the simple corpus. The other default arguments are set to match the best setting I found for the simple corpus.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    pdf-extractor

    pdf-extractor

    Node.js module for rendering pdf pages to images, svgs and HTML files

    ...A DOM Canvas is used to render and export the graphical layer of the pdf. Canvas exports *.png as a default but can be extended to export to other file types like .jpg. Pdf objects are converted to svg using the SVGGraphics parser of pdf.js. Pdf text is converted to HTML. This can be used as a (transparent) layer over the image to enable text selection. Pdf text is extracted to a text file for different usages (e.g. indexing the text). This library is in it's most basic form a node.js wrapper for pdf.js. It has default renderers to generate a default output, but is easily extended to incorporate custom logic or to generate different output. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    abstract2paper

    abstract2paper

    Auto-generate an entire paper from a prompt or abstract using NLP

    Enter your abstract into the little doohicky here, and quicker'n you can blink your eyes1, a shiny new paper'll come right out for ya! What are you waiting for? Click the "doohicky" link above to get started, and then click the link to open the demo notebook in Google Colaboratory. To run the demo as a Jupyter notebook (e.g., locally), use this version instead. Note: to compile a PDF of your auto-generated paper (when you run the demo locally), you'll need to have a working LaTeX...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Gym

    Gym

    Toolkit for developing and comparing reinforcement learning algorithms

    ...Open source interface to reinforce learning tasks. The gym library provides an easy-to-use suite of reinforcement learning tasks. Gym provides the environment, you provide the algorithm. You can write your agent using your existing numerical computation library, such as TensorFlow or Theano. It makes no assumptions about the structure of your agent, and is compatible with any numerical computation library, such as TensorFlow or Theano. The gym library is a collection of test problems — environments — that you can use to work out your reinforcement learning algorithms. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    MTCNN Face Detection Alignment

    MTCNN Face Detection Alignment

    Joint Face Detection and Alignment

    MTCNN_face_detection_alignment is an implementation of the “Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks” algorithm. The algorithm uses a cascade of three convolutional networks (P-Net, R-Net, O-Net) to jointly detect faces (bounding boxes) and align facial landmarks in a coarse-to-fine manner, leveraging multi-task learning. Non-maximum suppression and bounding box regression at each stage.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Bullet Physics SDK

    Bullet Physics SDK

    Real-time collision detection and multi-physics simulation for VR

    ...The simulator allows for hybrid simulation with neural networks. It allows different automatic differentiation backends, for forward and reverse mode gradients. TDS can be trained using Deep Reinforcement Learning, or using Gradient based optimization (for example LFBGS). In addition, the simulator can be entirely run on CUDA for fast rollouts, in combination with Augmented Random Search. This allows for 1 million simulation steps per second. It is highly recommended to use PyBullet Python bindings for improved support for robotics, reinforcement learning and VR. ...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 9
    Emb-GAM

    Emb-GAM

    An interpretable and efficient predictor using pre-trained models

    ...In contrast, generalized additive models (GAMs) can maintain interpretability but often suffer from poor prediction performance due to their inability to effectively capture feature interactions. In this work, we aim to bridge this gap by using pre-trained neural language models to extract embeddings for each input before learning a linear model in the embedding space. The final model (which we call Emb-GAM) is a transparent, linear function of its input features and feature interactions. Leveraging the language model allows Emb-GAM to learn far fewer linear coefficients, model larger interactions, and generalize well to novel inputs. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Create and run cloud-based virtual machines. Icon
    Create and run cloud-based virtual machines.

    Secure and customizable compute service that lets you create and run virtual machines.

    Computing infrastructure in predefined or custom machine sizes to accelerate your cloud transformation. General purpose (E2, N1, N2, N2D) machines provide a good balance of price and performance. Compute optimized (C2) machines offer high-end vCPU performance for compute-intensive workloads. Memory optimized (M2) machines offer the highest memory and are great for in-memory databases. Accelerator optimized (A2) machines are based on the A100 GPU, for very demanding applications.
    Try for free
  • 10
    OmicSelector

    OmicSelector

    Feature selection and deep learning modeling for omic biomarker study

    ...It was initially developed for miRNA-seq (small RNA, smRNA-seq; hence the name was miRNAselector), RNA-seq and qPCR, but can be applied for every problem where numeric features should be selected to counteract overfitting of the models. Using our tool, you can choose features, like miRNAs, with the most significant diagnostic potential (based on the results of miRNA-seq, for validation in qPCR experiments).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Dynacover

    Dynacover

    Dynamic Twitter images and banners

    ...You can run Dynacover in three different ways. As a GitHub action: the easiest way to run Dynacover is by setting it up in a public repository with GitHub Actions, using repository secrets for credentials. Follow this step-by-step guide to set this up - no coding is required. With Docker: you can use the public erikaheidi/dynacover Docker image to run Dynacover with a single command, no PHP is required. To further customize your cover, you can clone the dynacover repo to customize banner resources (JSON template and header images, both located at app/Resources), then build a local copy of the Dynacover Docker image to use your custom changes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    handson-ml

    handson-ml

    Teaching you the fundamentals of Machine Learning in python

    handson-ml hosts the notebooks for the first edition of the same hands-on ML book, reflecting the tooling and idioms of its time while teaching durable concepts. It walks through supervised and unsupervised learning with scikit-learn, then introduces deep learning using the earlier TensorFlow 1 graph-execution style. The examples underscore fundamentals like bias-variance trade-offs, regularization, and proper validation, grounding learners before they move to deep nets. Even though the deep learning stack evolved, the classical ML sections remain highly relevant for production data problems. The code is crafted to be clear rather than clever, prioritizing readability for newcomers. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Discord Mass DM GO

    Discord Mass DM GO

    The most popular Discord selfbot written in GO

    ...Supports HTTP(s), SOCKS5 and SOCKS4 proxies. Free & Open source. Emulates Discord's requests to a very high accuracy to prevent detection. Highly Documented. Multi-threaded using Light-weight Goroutines supporting thousands of concurrent accounts. Can Receieve messages during mass DM. Can ping user. Can send embeds using 3rd Party APIs. Supports multiple messages.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 14
    Elephas

    Elephas

    Distributed Deep learning with Keras & Spark

    ...Elephas intends to keep the simplicity and high usability of Keras, thereby allowing for fast prototyping of distributed models, which can be run on massive data sets. Elephas implements a class of data-parallel algorithms on top of Keras, using Spark's RDDs and data frames. Keras Models are initialized on the driver, then serialized and shipped to workers, alongside with data and broadcasted model parameters. Spark workers deserialize the model, train their chunk of data and send their gradients back to the driver. The "master" model on the driver is updated by an optimizer, which takes gradients either synchronously or asynchronously. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    AnimeGAN

    AnimeGAN

    A simple PyTorch Implementation of Generative Adversarial Networks

    ...The images are not clean, some outliers can be observed, which degrades the quality of the generated images. Anime-style images of 126 tags are collected from danbooru.donmai.us using the crawler tool gallery-dl. The images are then processed by an anime face detector python-anime face. The resulting dataset contains ~143,000 anime faces. Note that some of the tags may no longer be meaningful after cropping, i.e. the cropped face images under the 'uniform' tag may not contain visible parts of uniforms.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    Yellowbrick

    Yellowbrick

    Visual analysis and diagnostic tools to facilitate ML selection

    Yellowbrick extends the Scikit-Learn API to make model selection and hyperparameter tuning easier. Under the hood, it’s using Matplotlib. Yellowbrick is a suite of visual diagnostic tools called "Visualizers" that extend the scikit-learn API to allow human steering of the model selection process. In a nutshell, Yellowbrick combines scikit-learn with matplotlib in the best tradition of the scikit-learn documentation, but to produce visualizations for your machine learning workflow.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Hello AI World

    Hello AI World

    Guide to deploying deep-learning inference networks

    Hello AI World is a great way to start using Jetson and experiencing the power of AI. In just a couple of hours, you can have a set of deep learning inference demos up and running for realtime image classification and object detection on your Jetson Developer Kit with JetPack SDK and NVIDIA TensorRT. The tutorial focuses on networks related to computer vision, and includes the use of live cameras.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Video Pre-Training

    Video Pre-Training

    Learning to Act by Watching Unlabeled Online Videos

    The Video PreTraining (VPT) repository provides code and model artifacts for a project where agents learn to act by watching human gameplay videos—specifically, gameplay of Minecraft—using behavioral cloning. The idea is to learn general priors of control from large-scale, unlabeled video data, and then optionally fine-tune those priors for more goal-directed behavior via environment interaction. The repository contains demonstration models of different widths, fine-tuned variants (e.g. for building houses or early-game tasks), and inference scripts that instantiate agents from pretrained weights. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Alphafold2

    Alphafold2

    Unofficial Pytorch implementation / replication of Alphafold2

    ...This repository will now be geared towards a straight pytorch translation with some improvements on positional encoding. lhatsk has reported training a modified trunk of this repository, using the same setup as trRosetta, with competitive results. The underlying assumption is that the trunk works on the residue level, and then constitutes to atomic level for the structure module, whether it be SE3 Transformers, E(n)-Transformer, or EGNN doing the refinement.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    ruDALL-E

    ruDALL-E

    Generate images from texts. In Russian

    ...Models allow you to create images that did not exist before. All you need is a text description in Russian or another language. Try to create unique images together with generative artists using your own formulations. Ask generative artists to depict something special for you as well. The Kandinsky 2.0 model uses the reverse diffusion method and creates colorful images on various topics in a matter of seconds by text query in Russian and other languages. You can even combine different languages within a single query. This neural network has been developed and trained by Sber AI researchers in close collaboration with scientists from Artificial Intelligence Research Institute using joined datasets by Sber AI and SberDevices. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    AI Atelier

    AI Atelier

    Based on the Disco Diffusion, version of the AI art creation software

    ...We offer both Text-To-Image models (Disco Diffusion and VQGAN+CLIP) and Text-To-Text (GPT-J-6B and GPT-NEOX-20B) as options. Making available complete source code of licensed works and modifications, which include larger works using a licensed work, under the same license. Copyright and license notices must be preserved. When a modified version is used to provide a service over a network, the complete source code of the modified version must be made available. Create 2D and 3D animations and not only still frames (from Disco Diffusion v5 and VQGAN Animations). ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 22
    ASRT Speech Recognition

    ASRT Speech Recognition

    A Deep-Learning-Based Chinese Speech Recognition System

    ASRT is an end-to-end deep-learning Chinese ASR system built with TensorFlow/Keras, using convolution + CTC and a Max-Entropy HMM language model. It provides a REST/gRPC server backend and client SDKs in multiple languages (Python, Java, Go, Windows). Notably lightweight, it performs well without needing GPU acceleration and runs across platforms, targeting developers and researchers building Chinese voice interfaces.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    SageMaker MXNet Inference Toolkit

    SageMaker MXNet Inference Toolkit

    Toolkit for allowing inference and serving with MXNet in SageMaker

    SageMaker MXNet Inference Toolkit is an open-source library for serving MXNet models on Amazon SageMaker. This library provides default pre-processing, predict and postprocessing for certain MXNet model types and utilizes the SageMaker Inference Toolkit for starting up the model server, which is responsible for handling inference requests. AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    edge-TTS-record

    edge-TTS-record

    Tool that can record speech synthesis

    ...Users can type or paste text, preview the speech, and then trigger the recorder; the system automatically captures the audio output from the browser and writes it to a WAV file. The tool includes a small GUI (built with Aardio) and aims to be plug-and-play — after downloading the .exe you can immediately start using it without deep configuration. It is cloud-based in the sense that it relies on Edge’s online TTS service, so internet connection is required; but once recorded, the audio is local.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    YOLOX

    YOLOX

    YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5

    ...One more thing worth noting is that you should also implement pull_item and load_anno method for the Mosiac and MixUp augmentations. Except special cases, we always recommend using our COCO pre-trained weights for initializing the model. As YOLOX is an anchor-free detector with only several hyper-parameters, most of the time good results can be obtained with no changes to the models or training settings.
    Downloads: 14 This Week
    Last Update:
    See Project