Showing 1623 open source projects for "void based linux"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Raima Database Manager is an embedded in-memory database for IoT and Edge devices Icon
    Raima Database Manager is an embedded in-memory database for IoT and Edge devices

    Built by Developers, for Developers

    Raima Database Manager (RDM) is an embedded relational database optimized to run on resource-constrained IoT edge devices that require real-time response. RDM enables intelligent decisions to be made at the device level within microseconds.
    Learn More
  • 1
    AndroidEnv

    AndroidEnv

    RL research on Android devices

    android_env is a reinforcement learning (RL) environment developed by Google DeepMind that enables agents to interact with Android applications directly as a learning environment. It provides a standardized API for training agents to perform tasks on Android apps, supporting tasks ranging from games to productivity apps, making it suitable for research in real-world RL settings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Multi-Agent Orchestrator

    Multi-Agent Orchestrator

    Flexible and powerful framework for managing multiple AI agents

    Multi-Agent Orchestrator is an AI coordination framework that enables multiple intelligent agents to work together to complete complex, multi-step workflows.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    TorchDistill

    TorchDistill

    A coding-free framework built on PyTorch

    torchdistill (formerly kdkit) offers various state-of-the-art knowledge distillation methods and enables you to design (new) experiments simply by editing a declarative yaml config file instead of Python code. Even when you need to extract intermediate representations in teacher/student models, you will NOT need to reimplement the models, which often change the interface of the forward, but instead specify the module path(s) in the yaml file. In addition to knowledge distillation, this...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Audiogen Codec

    Audiogen Codec

    48khz stereo neural audio codec for general audio

    AGC (Audiogen Codec) is a convolutional autoencoder based on the DAC architecture, which holds SOTA. We found that training with EMA and adding a perceptual loss term with CLAP features improved performance. These codecs, being low compression, outperform Meta's EnCodec and DAC on general audio as validated from internal blind ELO games. We trained (relatively) very low compression codecs in the pursuit of solving a core issue regarding general music and audio generation, low acoustic...
    Downloads: 0 This Week
    Last Update:
    See Project
  • RMM Software | Remote Monitoring Platform and Tools Icon
    RMM Software | Remote Monitoring Platform and Tools

    Best-in-class automation, scalability, and single-pane IT management.

    Don’t settle when it comes to managing your clients’ IT infrastructure. Exceed their expectations with ConnectWise RMM, our MSP RMM software that provides proactive tools and NOC services—regardless of device environment. With the number of new vulnerabilities rising each year, smart patching procedures have never been more important. We automatically test and deploy patches when they are viable and restrict patches that are harmful. Get better protection for clients while you spend less time managing endpoints and more time growing your business. It’s tough to locate, afford, and retain quality talent. In fact, 81% of IT leaders say it’s hard to find the recruits they need. Add ConnectWise RMM, NOC services and get the expertise and problem resolution you need to become the advisor your clients demand—without adding headcount.
    Learn More
  • 5
    Haiku Sonnet for JAX

    Haiku Sonnet for JAX

    JAX-based neural network library

    Haiku is a library built on top of JAX designed to provide simple, composable abstractions for machine learning research. JAX is a numerical computing library that combines NumPy, automatic differentiation, and first-class GPU/TPU support. Haiku is a simple neural network library for JAX that enables users to use familiar object-oriented programming models while allowing full access to JAX's pure function transformations. Haiku provides two core tools: a module abstraction, hk.Module, and a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Causal ML

    Causal ML

    Uplift modeling and causal inference with machine learning algorithms

    Causal ML is a Python package that provides a suite of uplift modeling and causal inference methods using machine learning algorithms based on recent research [1]. It provides a standard interface that allows users to estimate the Conditional Average Treatment Effect (CATE) or Individual Treatment Effect (ITE) from experimental or observational data. Essentially, it estimates the causal impact of intervention T on outcome Y for users with observed features X, without strong assumptions on...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Angel

    Angel

    A Flexible and Powerful Parameter Server for large-scale ML

    Angel is a high-performance distributed machine learning and graph computing platform based on the philosophy of Parameter Server. It is tuned for performance with big data from Tencent and has a wide range of applicability and stability, demonstrating an increasing advantage in handling higher-dimension models. Angel is jointly developed by Tencent and Peking University, taking account of both high availability in industry and innovation in academia. With a model-centered core design...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Kubeflow

    Kubeflow

    Machine Learning Toolkit for Kubernetes

    Kubeflow is an open source Cloud Native machine learning platform based on Google’s internal machine learning pipelines. It seeks to make deployments of machine learning workflows on Kubernetes simple, portable and scalable. With Kubeflow you can deploy best-of-breed open-source systems for ML to diverse infrastructures. You can also take advantage of a number of great features, such as services for managing Jupyter notebooks and support for a TensorFlow Serving container. Wherever you...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    grepai

    grepai

    Semantic Search & Call Graphs for AI Agents

    grepai is a privacy-first, semantic code search CLI designed to replace traditional keyword-based search with meaning-aware queries, letting developers and code tools find relevant code by what it does rather than just text matches. It builds a semantic index of a project using vector embeddings, enabling natural language queries like “authentication logic” to return contextually relevant functions and modules even when naming differs dramatically, making code exploration far more intuitive....
    Downloads: 0 This Week
    Last Update:
    See Project
  • The Future of Pet Business Software for Modern Pet Care Icon
    The Future of Pet Business Software for Modern Pet Care

    Operate smarter, grow faster, scale effortlessly

    MoeGo is the ultimate partner for your pawsome business to thrive. Use MoeGo for stressless operation, extrodinary customer experience and business growth. Scheduling with MoeGo is a true pleasure. Find the best time slot to book your clients with MoeGo Smart Schedule™. And specially for mobile groomers, optimize your driving route with MoeGo Route™. Set up your online storefront to present your brand, and schedule appointments in seconds. Or extend the capability of your own website with embedding. We collaborate with the best payment infrastructure provider in the industry to ensure fast and secure transactions. Choose any payment method at your convenience, no matter online or in person. Connect with customers outside of your salons and vans. Keep up with your customers’ expectation. Turn every customer into a recurring with industry leading pet parent experience.
    Learn More
  • 10
    HeartMuLa

    HeartMuLa

    A Family of Open Sourced Music Foundation Models

    HeartMuLa is the open-source library and reference implementation for the HeartMuLa family of music foundation models, designed to support both music generation and music-related understanding tasks in a cohesive stack. At the center is HeartMuLa, a music language model that generates music conditioned on inputs like lyrics and tags, with multilingual support that broadens the range of lyric-driven use cases. The project also includes HeartCodec, a music codec optimized for high...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    FLUX.2-klein-4B

    FLUX.2-klein-4B

    Flux 2 image generation model pure C inference

    FLUX.2-klein-4B is a compact, high-performance C library implementation of the Flux optimization algorithm — an iterative approach for solving large-scale optimization problems common in scientific computing, machine learning, and numerical simulation. Written with a strong emphasis on simplicity, correctness, and performance, it abstracts the core logic of flux-based optimization into a minimal C API that can be embedded in broader applications without pulling in heavy dependencies. Because...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Anthropic's Original Performance

    Anthropic's Original Performance

    Anthropic's original performance take-home, now open for you to try

    Anthropic's Original Performance repository contains the publicly released version of a performance challenge originally used by Anthropic as part of their technical interview process, offering developers the opportunity to optimize and benchmark low-level code against simulated models. The project sets up a baseline performance problem where participants work to reduce simulated “clock cycles” required to run a given workload, effectively challenging them to engineer faster code under...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Minigrid

    Minigrid

    Simple and easily configurable grid world environments

    Minigrid is a lightweight, minimalistic grid-world environment library for reinforcement learning (RL) research. It provides a suite of simple 2D grid-based tasks (e.g., navigating mazes, unlocking doors, carrying keys) where an agent moves in discrete steps and interacts with objects. The design emphasizes speed (agents can run thousands of steps per second), low dependency overhead, and high customizability — making it easy to define new maps, new tasks, or wrappers. It supports the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    llmx.txt hub

    llmx.txt hub

    The largest directory for AI-ready documentation and tools

    llms-txt-hub serves as a central directory and knowledge base for the emerging llms.txt convention, a simple, text-based way for project owners to communicate preferences to AI tools. It catalogs implementations across projects and platforms, helping maintain a shared understanding of how LLM-powered services should interact with code and documentation. The repository aims to standardize patterns for allowlists, denylists, attribution, rate expectations, and contact information, mirroring...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    llm.c

    llm.c

    LLM training in simple, raw C/CUDA

    llm.c is a minimalist, systems-level implementation of a small transformer-based language model in C that prioritizes clarity and educational value. By stripping away heavy frameworks, it exposes the core math and memory flows of embeddings, attention, and feed-forward layers. The code illustrates how to wire forward passes, losses, and simple training or inference loops with direct control over arrays and buffers. Its compact design makes it easy to trace execution, profile hotspots, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Magika

    Magika

    Fast and accurate AI powered file content types detection

    Magika is an AI-powered file-type detector that uses a compact deep-learning model to classify binary and textual files with high accuracy and very low latency. The model is engineered to be only a few megabytes and to run quickly even on CPU-only systems, making it practical for desktop apps, servers, and security pipelines. Magika ships as a command-line tool and a library, providing drop-in detection that improves on traditional “magic number” and heuristic approaches, especially for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    OpenAI Realtime Embedded

    OpenAI Realtime Embedded

    Instructions on how to use the Realtime API on Microcontrollers

    openai-realtime-embedded is a repository that provides resources, SDKs, and example links for using OpenAI’s Realtime API on embedded hardware platforms (e.g. microcontrollers). The goal is to enable low-latency conversational agents (e.g. voice-based assistants) running directly on constrained devices, by leveraging WebRTC and streaming APIs to communicate with OpenAI systems. The repo includes pointers to an ESP32 implementation (maintained as esp32 branch) and documentation that Espressif...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    EdgeChains

    EdgeChains

    EdgeChains.js is Full-Stack GenAI library

    EdgeChains.js is a full-stack generative AI library that provides front-end, back-end, APIs, prompt management, and distributed computing capabilities, with core prompts and chains managed declaratively in Jsonnet. At EdgeChains, we take a unique approach to Generative AI - we think Generative AI is a deployment and configuration management challenge rather than a UI and library design pattern challenge. We build on top of a tech that has solved this problem in a different domain -...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Superduper

    Superduper

    Superduper: Integrate AI models and machine learning workflows

    Superduper is a Python-based framework for building end-2-end AI-data workflows and applications on your own data, integrating with major databases. It supports the latest technologies and techniques, including LLMs, vector-search, RAG, and multimodality as well as classical AI and ML paradigms. Developers may leverage Superduper by building compositional and declarative objects that out-source the details of deployment, orchestration versioning, and more to the Superduper engine. This...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Streamline Analyst

    Streamline Analyst

    AI agent that streamlines the entire process of data analysis

    Streamline Analyst is a cutting-edge, open-source application powered by Large Language Models (LLMs) designed to revolutionize data analysis. This Data Analysis Agent effortlessly automates all the tasks such as data cleaning, preprocessing, and even complex operations like identifying target objects, partitioning test sets, and selecting the best-fit models based on your data. With Streamline Analyst, results visualization and evaluation become seamless.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    NeMo Curator

    NeMo Curator

    Scalable data pre processing and curation toolkit for LLMs

    NeMo Curator is a Python library specifically designed for fast and scalable dataset preparation and curation for large language model (LLM) use-cases such as foundation model pretraining, domain-adaptive pretraining (DAPT), supervised fine-tuning (SFT) and paramter-efficient fine-tuning (PEFT). It greatly accelerates data curation by leveraging GPUs with Dask and RAPIDS, resulting in significant time savings. The library provides a customizable and modular interface, simplifying pipeline...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    OpenMLDB

    OpenMLDB

    OpenMLDB is an open-source machine learning database

    OpenMLDB is an open-source machine learning database that provides a feature platform computing consistent features for training and inference. OpenMLDB is an open-source machine learning database that is committed to solving the data and feature challenges. OpenMLDB has been deployed in hundreds of real-world enterprise applications. It prioritizes the capability of feature engineering using SQL for open-source, which offers a feature platform enabling consistent features for training and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    snorkel

    snorkel

    A system for quickly generating training data with weak supervision

    The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI application development platform based on the core ideas behind Snorkel. The Snorkel project started at Stanford in 2016 with a simple technical bet: that it would increasingly be the training data, not the models, algorithms, or infrastructure, that decided whether a machine learning project succeeded or failed. Given this premise, we set out to explore the radical idea that you could bring mathematical and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    TPOT

    TPOT

    A Python Automated Machine Learning tool that optimizes ML

    Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming. TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    AtomAI

    AtomAI

    Deep and Machine Learning for Microscopy

    AtomAI is a Pytorch-based package for deep and machine-learning analysis of microscopy data that doesn't require any advanced knowledge of Python or machine learning. The intended audience is domain scientists with a basic understanding of how to use NumPy and Matplotlib. It was developed by Maxim Ziatdinov at Oak Ridge National Lab. The purpose of the AtomAI is to provide an environment that bridges the instrument-specific libraries and general physical analysis by enabling the seamless...
    Downloads: 0 This Week
    Last Update:
    See Project