Showing 49 open source projects for "decoder"

View related business solutions
  • Build on Google Cloud with $300 in Free Credit Icon
    Build on Google Cloud with $300 in Free Credit

    New to Google Cloud? Get $300 in free credit to explore Compute Engine, BigQuery, Cloud Run, Vertex AI, and 150+ other products.

    Start your next project with $300 in free Google Cloud credit. Spin up VMs, run containers, query exabytes in BigQuery, or build AI apps with Vertex AI and Gemini. Once your credits are used, keep building with 20+ products with free monthly usage, including Compute Engine, Cloud Storage, GKE, and Cloud Run functions. Sign up to start building right away.
    Start Free Trial
  • Run Any Workload on Compute Engine VMs Icon
    Run Any Workload on Compute Engine VMs

    From dev environments to AI training, choose preset or custom VMs with 1–96 vCPUs and industry-leading 99.95% uptime SLA.

    Compute Engine delivers high-performance virtual machines for web apps, databases, containers, and AI workloads. Choose from general-purpose, compute-optimized, or GPU/TPU-accelerated machine types—or build custom VMs to match your exact specs. With live migration and automatic failover, your workloads stay online. New customers get $300 in free credits.
    Try Compute Engine
  • 1
    Pytorch-toolbelt

    Pytorch-toolbelt

    PyTorch extensions for fast R&D prototyping and Kaggle farming

    ...Extras for Catalyst library (Visualization of batch predictions, additional metrics). By design, both encoder and decoder produces a list of tensors, from fine (high-resolution, indexed 0) to coarse (low-resolution) feature maps. Access to all intermediate feature maps is beneficial if you want to apply deep supervision losses on them or encoder-decoder of object detection task.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Whisper

    Whisper

    Robust Speech Recognition via Large-Scale Weak Supervision

    ...A Transformer sequence-to-sequence model is trained on various speech processing tasks, including multilingual speech recognition, speech translation, spoken language identification, and voice activity detection. These tasks are jointly represented as a sequence of tokens to be predicted by the decoder, allowing a single model to replace many stages of a traditional speech-processing pipeline. The multitask training format uses a set of special tokens that serve as task specifiers or classification targets.
    Downloads: 76 This Week
    Last Update:
    See Project
  • 3
    Segment Anything

    Segment Anything

    Provides code for running inference with the SegmentAnything Model

    ...It’s a promptable segmenter: you guide it with points, boxes, or rough masks, and it predicts high-quality object masks consistent with the prompt. The architecture separates a powerful image encoder from a lightweight mask decoder, so the heavy vision work can be computed once and the interactive part stays fast. A bundled automatic mask generator can sweep an image and propose many object masks, which is useful for dataset bootstrapping or bulk annotation. The repository includes ready-to-use weights, Python APIs, and example notebooks demonstrating both interactive and automatic modes. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Granite Code Models

    Granite Code Models

    A Family of Open Foundation Models for Code Intelligence

    Granite Code Models are IBM’s open-source, decoder-only models tailored for code tasks such as fixing bugs, explaining and documenting code, and modernizing codebases. Trained on code from 116 programming languages, the family targets strong performance across diverse benchmarks while remaining accessible to the community. The repository introduces the model lineup, intended uses, and evaluation highlights, and it complements IBM’s broader Granite initiative spanning multiple modalities. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 99.99% Uptime for MySQL and PostgreSQL on Google Cloud Icon
    99.99% Uptime for MySQL and PostgreSQL on Google Cloud

    Enterprise Plus edition delivers sub-second maintenance downtime and 2x read/write performance. Built for critical apps.

    Cloud SQL Enterprise Plus gives you a 99.99% availability SLA with near-zero downtime maintenance—typically under 10 seconds. Get 2x better read/write performance, intelligent data caching, and 35 days of point-in-time recovery. Supports MySQL, PostgreSQL, and SQL Server with built-in vector search for gen AI apps. New customers get $300 in free credit.
    Try Cloud SQL Free
  • 5
    Step1X-Edit

    Step1X-Edit

    A SOTA open-source image editing model

    Step1X-Edit is a state-of-the-art open-source image editing model/framework that uses a multimodal large language model (LLM) together with a diffusion-based image decoder to let users edit images simply via natural-language instructions plus a reference image. You supply an existing image and a textual command — e.g. “add a ruby pendant on the girl’s neck” or “make the background a sunset over mountains” — and the model interprets the instruction, computes a latent embedding combining the image content and user intent, then decodes a new image implementing the edit. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    x-transformers

    x-transformers

    A simple but complete full-attention transformer

    A simple but complete full-attention transformer with a set of promising experimental features from various papers. Proposes adding learned memory key/values prior to attending. They were able to remove feedforwards altogether and attain a similar performance to the original transformers. I have found that keeping the feedforwards and adding the memory key/values leads to even better performance. Proposes adding learned tokens, akin to CLS tokens, named memory tokens, that is passed through...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 7
    Step3-VL-10B

    Step3-VL-10B

    Multimodal model achieving SOTA performance

    ...It achieves this efficiency and strong performance through unified pre-training on a massive 1.2 trillion-token multimodal corpus that jointly optimizes a language-aligned perception encoder with a powerful decoder, creating deep synergy between image processing and text understanding.
    Downloads: 13 This Week
    Last Update:
    See Project
  • 8
    GLM-OCR

    GLM-OCR

    Accurate × Fast × Comprehensive

    GLM-OCR is an open-source multimodal optical character recognition (OCR) model built on a GLM-V encoder–decoder foundation that brings robust, accurate document understanding to complex real-world layouts and modalities. Designed to handle text recognition, table parsing, formula extraction, and general information retrieval from documents containing mixed content, GLM-OCR excels across major benchmarks while remaining highly efficient with a relatively compact parameter size (~0.9B), enabling deployment in high-concurrency services and edge environments. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 9
    CTranslate2

    CTranslate2

    Fast inference engine for Transformer models

    CTranslate2 is a C++ and Python library for efficient inference with Transformer models. The project implements a custom runtime that applies many performance optimization techniques such as weights quantization, layers fusion, batch reordering, etc., to accelerate and reduce the memory usage of Transformer models on CPU and GPU. The execution is significantly faster and requires less resources than general-purpose deep learning frameworks on supported models and tasks thanks to many...
    Downloads: 4 This Week
    Last Update:
    See Project
  • Easily Host LLMs and Web Apps on Cloud Run Icon
    Easily Host LLMs and Web Apps on Cloud Run

    Run everything from popular models with on-demand NVIDIA L4 GPUs to web apps without infrastructure management.

    Run frontend and backend services, batch jobs, host LLMs, and queue processing workloads without the need to manage infrastructure. Cloud Run gives you on-demand GPU access for hosting LLMs and running real-time AI—with 5-second cold starts and automatic scale-to-zero so you only pay for actual usage. New customers get $300 in free credit to start.
    Try Cloud Run Free
  • 10
    TorchAudio

    TorchAudio

    Data manipulation and transformation for audio signal processing

    The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    LLM Foundry

    LLM Foundry

    LLM training code for MosaicML foundation models

    Introducing MPT-7B, the first entry in our MosaicML Foundation Series. MPT-7B is a transformer trained from scratch on 1T tokens of text and code. It is open source, available for commercial use, and matches the quality of LLaMA-7B. MPT-7B was trained on the MosaicML platform in 9.5 days with zero human intervention at a cost of ~$200k. Large language models (LLMs) are changing the world, but for those outside well-resourced industry labs, it can be extremely difficult to train and deploy...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    Bard API

    Bard API

    The unofficial python package that returns response of Google Bard

    The Python package returns a response of Google Bard through the value of the cookie. This package is designed for application to the Python package ExceptNotifier and Co-Coder. Please note that the bardapi is not a free service, but rather a tool provided to assist developers with testing certain functionalities due to the delayed development and release of Google Bard's API. It has been designed with a lightweight structure that can easily adapt to the emergence of an official API....
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    FireRedASR

    FireRedASR

    Open-source industrial-grade ASR models

    ...The project includes multiple model variants to meet different application needs, such as high-accuracy end-to-end interaction using an encoder-adapter-LLM framework and efficient real-time recognition using attention-based encoder-decoder architectures, giving developers flexibility in balancing performance and resource constraints. FireRedASR not only excels in traditional speech recognition tasks but also demonstrates strong capability in challenging scenarios like singing lyrics recognition, where accurate transcription is often difficult for conventional models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    IndexTTS2

    IndexTTS2

    Industrial-level controllable zero-shot text-to-speech system

    ...It builds on state-of-the-art models such as XTTS and other modern neural TTS backbones, improving them with a conformer-based speech conditional encoder and upgrading the decoder to a high-quality vocoder (BigVGAN2), leading to clearer and more natural audio output. The system supports zero-shot voice cloning — meaning it can mimic a target speaker’s voice from a short reference sample — making it versatile for multi-voice uses. Compared to many open-source TTS tools, IndexTTS emphasizes efficiency and controllability: it offers faster inference, simpler training pipelines, and controllable speech parameters (like duration, pitch, and prosody), which is critical for production use.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    TimesFM

    TimesFM

    Pretrained time-series foundation model developed by Google Research

    TimesFM is a pretrained time-series foundation model from Google Research built for forecasting tasks, designed to generalize across many domains without requiring extensive per-dataset retraining. It provides a decoder-only model approach to forecasting, aiming for strong performance even in zero-shot or low-data settings where traditional models often struggle. The project includes code and an inference API intended to make it practical to run forecasts programmatically, with options to use different backends such as Torch or Flax depending on your environment and performance needs. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    OpenAI DALL·E AsyncImage SwiftUI

    OpenAI DALL·E AsyncImage SwiftUI

    OpenAI swift async text to image for SwiftUI app using OpenAI

    ...You need to have Xcode 13 installed in order to have access to Documentation Compiler (DocC) OpenAI's text-to-image model DALL-E 2 is a recent example of diffusion models. It uses diffusion models for both the model's prior (which produces an image embedding given a text caption) and the decoder that generates the final image. In machine learning, diffusion models, also known as diffusion probabilistic models, are a class of latent variable models. They are Markov chains trained using variational inference. The goal of diffusion models is to learn the latent structure of a dataset by modeling the way in which data points diffuse through the latent space.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    ESPnet

    ESPnet

    End-to-end speech processing toolkit

    ...ESPnet provides many ready-to-run recipes for popular academic benchmarks, making it straightforward to reproduce published results or serve as baselines for new research. The toolkit also hosts numerous pretrained models and example configs, ranging from Transformer and Conformer architectures to various attention-based encoder-decoder models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    DeepSeek LLM

    DeepSeek LLM

    DeepSeek LLM: Let there be answers

    ...The model is trained from scratch, reportedly on a vast multilingual + code + reasoning dataset, and competes with other open or open-weight models. The architecture mirrors established decoder-only transformer families: pre-norm structure, rotational embeddings (RoPE), grouped query attention (GQA), and mixing in languages and tasks. It supports both “Base” (foundation model) and “Chat” (instruction / conversation tuned) variants.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    mTRF-Toolbox

    mTRF-Toolbox

    A MATLAB package for modelling multivariate stimulus-response data

    mTRF-Toolbox is a MATLAB package for modelling multivariate stimulus-response data, suitable for neurophysiological data such as MEG, EEG, sEEG, ECoG and EMG. It can be used to model the functional relationship between neuronal populations and dynamic sensory inputs such as natural scenes and sounds, or build neural decoders for reconstructing stimulus features and developing real-time applications such as brain-computer interfaces (BCIs). Toolbox Paper: ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 20
    CSM (Conversational Speech Model)

    CSM (Conversational Speech Model)

    A Conversational Speech Generation Model

    The CSM (Conversational Speech Model) is a speech generation model developed by Sesame AI that creates RVQ audio codes from text and audio inputs. It uses a Llama backbone and a smaller audio decoder to produce audio codes for realistic speech synthesis. The model has been fine-tuned for interactive voice demos and is hosted on platforms like Hugging Face for testing. CSM offers a flexible setup and is compatible with CUDA-enabled GPUs for efficient execution.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    DALL-E 2 - Pytorch

    DALL-E 2 - Pytorch

    Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis

    ...To train CLIP, you can either use x-clip package, or join the LAION discord, where a lot of replication efforts are already underway. Then, you will need to train the decoder, which learns to generate images based on the image embedding coming from the trained CLIP.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 22
    ConsistencyDecoder

    ConsistencyDecoder

    Consistency Distilled Diff VAE

    ConsistencyDecoder is a Python package from OpenAI that introduces an improved decoding method for variational autoencoders (VAEs) used in Stable Diffusion pipelines. Instead of relying solely on the standard GAN or VAE decoder, this approach leverages a Consistency Distilled Diff VAE, designed to produce higher-quality and more stable outputs from encoded latents. The project provides a simple API for encoding with a Stable Diffusion VAE and decoding using the new consistency model, allowing for side-by-side comparisons with traditional decoders. It demonstrates how consistency models can enhance visual fidelity while maintaining efficiency, reducing artifacts common in GAN-decoded outputs. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 23
    Basaran

    Basaran

    Basaran, an open-source alternative to the OpenAI text completion API

    ...The open source community will eventually witness the Stable Diffusion moment for large language models (LLMs), and Basaran allows you to replace OpenAI's service with the latest open-source model to power your application without modifying a single line of code. Stream generation using various decoding strategies. Support both decoder-only and encoder-decoder models. Detokenizer that handles surrogates and whitespace. Multi-GPU support with optional 8-bit quantization. Real-time partial progress using server-sent events. Compatible with OpenAI API and client libraries. Comes with a fancy web-based playground. Docker images are available on Docker Hub and GitHub Packages.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    OpenNMT-tf

    OpenNMT-tf

    Neural machine translation and sequence learning using TensorFlow

    ...Models are described with code to allow training custom architectures and overriding default behavior. For example, the following instance defines a sequence-to-sequence model with 2 concatenated input features, a self-attentional encoder, and an attentional RNN decoder sharing its input and output embeddings. Sequence to sequence models can be trained with guided alignment and alignment information are returned as part of the translation API.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    NÜWA - Pytorch

    NÜWA - Pytorch

    Implementation of NÜWA, attention network for text to video synthesis

    Implementation of NÜWA, state of the art attention network for text-to-video synthesis, in Pytorch. It also contains an extension into video and audio generation, using a dual decoder approach. It seems as though a diffusion-based method has taken the new throne for SOTA. However, I will continue on with NUWA, extending it to use multi-headed codes + hierarchical causal transformer. I think that direction is untapped for improving on this line of work. In the paper, they also present a way to condition the video generation based on segmentation mask(s). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.
Try Free →