Showing 26 open source projects for "computations"

View related business solutions
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • 1
    GPflow

    GPflow

    Gaussian processes in TensorFlow

    ...It implements modern Gaussian process inference for composable kernels and likelihoods. GPflow builds on TensorFlow 2.4+ and TensorFlow Probability for running computations, which allows fast execution on GPUs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Mctx

    Mctx

    Monte Carlo tree search in JAX

    mctx is a Monte Carlo Tree Search (MCTS) library developed by Google DeepMind for reinforcement learning research. It enables efficient and flexible implementation of MCTS algorithms, including those used in AlphaZero and MuZero.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    CUTLASS

    CUTLASS

    CUDA Templates for Linear Algebra Subroutines

    ...The resulting flexibility simplifies their use as building blocks within custom kernels and applications. To support a wide variety of applications, CUTLASS provides extensive support for mixed-precision computations, providing specialized data-movement and multiply-accumulate abstractions for half-precision floating point (FP16), BFloat16 (BF16), Tensor Float 32 (TF32), etc.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    TensorFlow

    TensorFlow

    TensorFlow is an open source library for machine learning

    ...Available across all common operating systems (desktop, server and mobile), TensorFlow provides stable APIs for Python and C as well as APIs that are not guaranteed to be backwards compatible or are 3rd party for a variety of other languages. The platform can be easily deployed on multiple CPUs, GPUs and Google's proprietary chip, the tensor processing unit (TPU). TensorFlow expresses its computations as dataflow graphs, with each node in the graph representing an operation. Nodes take tensors—multidimensional arrays—as input and produce tensors as output. The framework allows for these algorithms to be run in C++ for better performance, while the multiple levels of APIs let the user determine how high or low they wish the level of abstraction to be in the models produced. ...
    Downloads: 37 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    LightAutoML

    LightAutoML

    Fast and customizable framework for automatic ML model creation

    LightAutoML is an automated machine learning (AutoML) framework optimized for efficient model training and hyperparameter tuning, focusing on both tabular and text data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Hummingbird

    Hummingbird

    Hummingbird compiles trained ML models into tensor computation

    Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to seamlessly leverage neural network frameworks (such as PyTorch) to accelerate traditional ML models. Thanks to Hummingbird, users can benefit from (1) all the current and future optimizations implemented in neural network frameworks; (2) native hardware acceleration; (3) having a unique platform to support both traditional and neural network models; and having all of this (4) without having to re-engineer their models.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    BioNeMo

    BioNeMo

    BioNeMo Framework: For building and adapting AI models

    BioNeMo is an AI-powered framework developed by NVIDIA for protein and molecular generation using deep learning models. It provides researchers and developers with tools to design, analyze, and optimize biological molecules, aiding in drug discovery and synthetic biology applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    TorchAudio

    TorchAudio

    Data manipulation and transformation for audio signal processing

    ...Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch operations which makes it easy to use and feel like a natural extension.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    PyBroker

    PyBroker

    Algorithmic Trading in Python with Machine Learning

    Are you looking to enhance your trading strategies with the power of Python and machine learning? Then you need to check out PyBroker! This Python framework is designed for developing algorithmic trading strategies, with a focus on strategies that use machine learning. With PyBroker, you can easily create and fine-tune trading rules, build powerful models, and gain valuable insights into your strategy’s performance.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    Elastiknn

    Elastiknn

    Elasticsearch plugin for nearest neighbor search

    ...Methods like word2vec and convolutional neural nets can convert many data modalities (text, images, users, items, etc.) into numerical vectors, such that pairwise distance computations on the vectors correspond to semantic similarity of the original data. Elasticsearch is a ubiquitous search solution, but its support for vectors is limited. This plugin fills the gap by bringing efficient exact and approximate vector search to Elasticsearch. This enables users to combine traditional queries (e.g., “some product”) with vector search queries (e.g., an image (vector) of a product) for an enhanced search experience.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    tvm

    tvm

    Open deep learning compiler stack for cpu, gpu, etc.

    Apache TVM is an open source machine learning compiler framework for CPUs, GPUs, and machine learning accelerators. It aims to enable machine learning engineers to optimize and run computations efficiently on any hardware backend. The vision of the Apache TVM Project is to host a diverse community of experts and practitioners in machine learning, compilers, and systems architecture to build an accessible, extensible, and automated open-source framework that optimizes current and emerging machine learning models for any hardware platform. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    PennyLane

    PennyLane

    A cross-platform Python library for differentiable programming

    ...Support for hybrid quantum and classical models, and compatible with existing machine learning libraries. Quantum circuits can be set up to interface with either NumPy, PyTorch, JAX, or TensorFlow, allowing hybrid CPU-GPU-QPU computations. The same quantum circuit model can be run on different devices. Install plugins to run your computational circuits on more devices, including Strawberry Fields, Amazon Braket, Qiskit and IBM Q, Google Cirq, Rigetti Forest, and the Microsoft QDK.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Shinkai: Local AI Agents

    Shinkai: Local AI Agents

    Shinkai allows you to create advanced AI (local) agents effortlessly

    ...Key Features: - No-Code Agent Creation - Build specialized agents (trading bots, sentiment trackers, etc.) with simple descriptions - Multi-Agent Collaboration - Agents work together to solve complex problems - Crypto Integration - Built-in support for decentralized payments and transactions - Flexible AI Models - Choose from cloud models (GPT-4, Claude) or run locally - Universal Compatibility - Works with Model Context Protocol (MCP) for cross-platform integration - Local Security - Crypto keys and computations stay on your device Shinkai transforms AI from single-task tools into collaborative, autonomous systems that can operate in decentralized networks while maintaining privacy and security.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Gym

    Gym

    Toolkit for developing and comparing reinforcement learning algorithms

    Gym by OpenAI is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents, everything from walking to playing games like Pong or Pinball. Open source interface to reinforce learning tasks. The gym library provides an easy-to-use suite of reinforcement learning tasks. Gym provides the environment, you provide the algorithm. You can write your agent using your existing numerical computation library, such as TensorFlow or Theano. It makes no...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    Diffusers-Interpret

    Diffusers-Interpret

    Model explainability for Diffusers

    ...To analyze how a token in the input prompt influenced the generation, you can study the token attribution scores. You can also check all the images that the diffusion process generated at the end of each step. Gradient checkpointing also reduces GPU usage, but makes computations a bit slower.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    SRU

    SRU

    Training RNNs as Fast as CNNs

    Common recurrent neural architectures scale poorly due to the intrinsic difficulty in parallelizing their state computations. In this work, we propose the Simple Recurrent Unit (SRU), a light recurrent unit that balances model capacity and scalability. SRU is designed to provide expressive recurrence, enable highly parallelized implementation, and comes with careful initialization to facilitate the training of deep models. We demonstrate the effectiveness of SRU on multiple NLP tasks. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Couler

    Couler

    Unified Interface for Constructing and Managing Workflows

    Couler is a system designed for unified machine learning workflow optimization in the cloud. Couler endeavors to provide a unified interface for constructing and optimizing workflows across various workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow. Couler enhances workflow efficiency through features like Autonomous Workflow Construction, Automatic Artifact Caching Mechanisms, Big Workflow Auto Parallelism Optimization, and Automatic Hyperparameters Tuning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    CrypTen

    CrypTen

    A framework for Privacy Preserving Machine Learning

    CrypTen is a research framework developed by Facebook Research for privacy-preserving machine learning built directly on top of PyTorch. It provides a secure and intuitive environment for performing computations on encrypted data using Secure Multiparty Computation (SMPC). Designed to make secure computation accessible to machine learning practitioners, CrypTen introduces a CrypTensor object that behaves like a regular PyTorch tensor, allowing users to seamlessly apply automatic differentiation and neural network operations. Its design mirrors PyTorch’s modular and library-based structure, enabling flexible experimentation, debugging, and model development. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    P3: The Portable Unix Programming System

    P3: The Portable Unix Programming System

    Multi-process homeostatic software agent library

    PUPS/P3 facilitates development of multi-process multi-host computations by providing tools to emulate colonies of homeostatic organisms. It permits persistent computation, homeostatic resource protection, and asychronous interprocess communication.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Deep Photo Style Transfer

    Deep Photo Style Transfer

    Code and data for paper "Deep Photo Style Transfer"

    ...The repository provides code in Torch (Lua), MATLAB / Octave scripts for computing the Laplacian, and pre-trained models. Pretrained models and example scripts for ease of use. Compatibility with MATLAB / Octave for Laplacian computations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    ECO

    ECO

    Matlab implementation of the ECO tracker

    ECO (Efficient Convolution Operators for Tracking) is a high-performance object tracking algorithm developed by Martin Danelljan and collaborators. It is based on discriminative correlation filters and designed to handle appearance changes, occlusions, and scale variations in visual object tracking tasks. The code provides a MATLAB implementation of the ECO and ECO-HC (high-speed) variants and was one of the top performers on multiple visual tracking benchmarks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    A python framework for fuzzy inference computations
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23

    CURRENNT

    CUDA-enabled machine learning library for recurrent neural networks

    CURRENNT is a machine learning library for Recurrent Neural Networks (RNNs) which uses NVIDIA graphics cards to accelerate the computations. The library implements uni- and bidirectional Long Short-Term Memory (LSTM) architectures and supports deep networks as well as very large data sets that do not fit into main memory.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24

    Parallel Neural Networks

    Neural networks in CUDA & OpenCL with back propagation algorithm

    ...It's aim is to compare the efficiency of both technologies and to check where which hacks works better. What is more one of my tasks is to compare different ways of decomposing computations in parallel.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    MACSY

    MACSY

    Modular Architecture for Cognitive Systems

    Macsy is a framework for developing modular agents. Data is organised in blackboards. Computations are performed by modules that annotate the data in the blackboards. Modules communicate indirectly through the annotations that they leave in the blackboards. The framework enables the development of decentralised software agents for a plethora of applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next