Showing 2035 open source projects for "pam-python"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    Bayesian machine learning notebooks

    Bayesian machine learning notebooks

    Notebooks about Bayesian methods for machine learning

    Notebooks about Bayesian methods for machine learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    PaddlePaddle models

    PaddlePaddle models

    Pre-trained and Reproduced Deep Learning Models

    Pre-trained and Reproduced Deep Learning Models ("Flying Paddle" official model library, including a variety of academic frontier and industrial scene verification of deep learning models) Flying Paddle's industrial-level model library includes a large number of mainstream models that have been polished by industrial practice for a long time and models that have won championships in international competitions; it provides many scenarios for semantic understanding, image classification,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Deep Exemplar-based Video Colorization

    Deep Exemplar-based Video Colorization

    The source code of CVPR 2019 paper "Deep Exemplar-based Colorization"

    The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization". End-to-end network for exemplar-based video colorization. The main challenge is to achieve temporal consistency while remaining faithful to the reference style. To address this issue, we introduce a recurrent framework that unifies the semantic correspondence and color propagation steps. Both steps allow a provided reference image to guide the colorization of every frame, thus reducing accumulated propagation...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    Image GPT

    Image GPT

    Large-scale autoregressive pixel model for image generation by OpenAI

    Image-GPT is the official research code and models from OpenAI’s paper Generative Pretraining from Pixels. The project adapts GPT-2 to the image domain, showing that the same transformer architecture can model sequences of pixels without altering its fundamental structure. It provides scripts to download pretrained checkpoints of different model sizes (small, medium, large) trained on large-scale datasets and includes utilities for handling color quantization with a 9-bit palette....
    Downloads: 3 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    Surface Defect Detection Dataset Papers

    Surface Defect Detection Dataset Papers

    Constantly summarizing open source dataset and critical papers

    At present, surface defect equipment based on machine vision has widely replaced artificial visual inspection in various industrial fields, including 3C, automobiles, home appliances, machinery manufacturing, semiconductors and electronics, chemical, pharmaceutical, aerospace, light industry and other industries. Traditional surface defect detection methods based on machine vision often use conventional image processing algorithms or artificially designed features plus classifiers. Generally...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    HiFi-GAN

    HiFi-GAN

    Generative Adversarial Networks for Efficient and High Fidelity Speech

    HiFi-GAN is a GAN-based neural vocoder designed to generate high-fidelity speech waveforms from mel spectrograms with exceptional efficiency. It introduces a generator architecture tailored to model the periodic structure of speech and a set of discriminators that focus on different scales and periods of the waveform to better capture naturalness. The model targets a sweet spot between sample quality and generation speed, outperforming many previous GAN vocoders while being far faster than...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    PyArmadillo

    PyArmadillo

    linear algebra library for Python

    PyArmadillo - streamlined linear algebra library for Python, with emphasis on ease of use. Alternative to NumPy / SciPy. * Main page: https://pyarma.sourceforge.io * Documentation: https://pyarma.sourceforge.io/docs.html * Bug reports: https://pyarma.sourceforge.io/faq.html * Git repo: https://gitlab.com/jason-rumengan/pyarma
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    DeepMind Lab

    DeepMind Lab

    A customizable 3D platform for agent-based AI research

    ...The flag is omitted from the examples here for brevity, but it should be used for real training and evaluation where performance matters. DeepMind Lab ships with an example random agent in python/random_agent.py which can be used as a starting point for implementing a learning agent.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    OpenAI Glow

    OpenAI Glow

    Copy code in "Glow: Generative Flow with Invertible 1x1 Convolutions"

    Glow is an open source generative model released by OpenAI that demonstrates flow-based generative modeling techniques. Unlike models that rely on approximate inference, Glow uses invertible transformations to directly learn the data distribution, allowing for exact likelihood computation and efficient sampling. The model is capable of producing high-quality synthetic images while maintaining interpretable latent spaces that enable meaningful manipulation of generated outputs. Glow’s...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    NLP Architect

    NLP Architect

    A model library for exploring state-of-the-art deep learning

    NLP Architect is an open-source Python library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing and Natural Language Understanding neural networks. The library includes our past and ongoing NLP research and development efforts as part of Intel AI Lab. NLP Architect is designed to be flexible for adding new models, neural network components, data handling methods, and for easy training and running models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Lambda Networks

    Lambda Networks

    Implementation of LambdaNetworks, a new approach to image recognition

    Implementation of λ Networks, a new approach to image recognition that reaches SOTA on ImageNet. The new method utilizes λ layer, which captures interactions by transforming contexts into linear functions, termed lambdas, and applying these linear functions to each input separately. Shinel94 has added a Keras implementation! It won't be officially supported in this repository, so either copy / paste the code under ./lambda_networks/tfkeras.py or make sure to install tensorflow and keras...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Libra

    Libra

    Ergonomic machine learning for everyone

    An ergonomic machine learning library for non-technical users. Save time. Blaze through ML.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    gradslam

    gradslam

    gradslam is an open source differentiable dense SLAM library

    gradslam is an open-source framework providing differentiable building blocks for simultaneous localization and mapping (SLAM) systems. We enable the usage of dense SLAM subsystems from the comfort of PyTorch. The question of “representation” is central in the context of dense simultaneous localization and mapping (SLAM). Newer learning-based approaches have the potential to leverage data or task performance to directly inform the choice of representation. However, learning representations...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    GIMP ML

    GIMP ML

    AI for GNU Image Manipulation Program

    This repository introduces GIMP3-ML, a set of Python plugins for the widely popular GNU Image Manipulation Program (GIMP). It enables the use of recent advances in computer vision to the conventional image editing pipeline. Applications from deep learning such as monocular depth estimation, semantic segmentation, mask generative adversarial networks, image super-resolution, de-noising and coloring have been incorporated with GIMP through Python-based plugins.
    Downloads: 19 This Week
    Last Update:
    See Project
  • 15
    Neural Networks Collection

    Neural Networks Collection

    Neural Networks Collection

    ...So far the project implements: LVQ in several variants, SOM in several variants, Hopfield network and Perceptron. Other neural network types are planned, but not implemented yet. The project can run in two modes: command line tool and Python 7.2 extension. Currently, Python version appears more functional, as it allows easy interaction with algorithms developed by other people.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    commit-autosuggestions

    commit-autosuggestions

    A tool that AI automatically recommends commit messages

    This is implementation of CommitBERT: Commit Message Generation Using Pre-Trained Programming Language Model. CommitBERT is accepted in ACL workshop : NLP4Prog. Have you ever hesitated to write a commit message? Now get a commit message from Artificial Intelligence! CodeBERT: A Pre-Trained Model for Programming and Natural Languages introduces a pre-trained model in a combination of Program Language and Natural Language(PL-NL). It also introduces the problem of converting code into natural...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Ceka

    Ceka

    Crowd Environment and its Knowledge Analysis

    A knowledge analysis tool for crowdsourcing based on Weka. We also have a Python version of Crowdsourcing Learning: CrowdwiseKit on GitHub (https://github.com/tssai-lab/CrowdwiseKit).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    TFLearn

    TFLearn

    Deep learning library featuring a higher-level API for TensorFlow

    TFlearn is a modular and transparent deep learning library built on top of Tensorflow. It was designed to provide a higher-level API to TensorFlow in order to facilitate and speed up experimentations while remaining fully transparent and compatible with it. Easy-to-use and understand high-level API for implementing deep neural networks, with tutorials and examples. Fast prototyping through highly modular built-in neural network layers, regularizers, optimizers, and metrics. Full transparency...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    fastNLP

    fastNLP

    fastNLP: A Modularized and Extensible NLP Framework

    fastNLP is a lightweight framework for natural language processing (NLP), the goal is to quickly implement NLP tasks and build complex models. A unified Tabular data container simplifies the data preprocessing process. Built-in Loader and Pipe for multiple datasets, eliminating the need for preprocessing code. Various convenient NLP tools, such as Embedding loading (including ELMo and BERT), intermediate data cache, etc.. Provide a variety of neural network components and recurrence models...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    CC-Net

    CC-Net

    Tools to download and cleanup Common Crawl data

    cc_net provides tools to download, segment, clean, and filter Common Crawl to build large-scale text corpora, including monolingual datasets and the multilingual CC-100 collection introduced in the associated paper. It includes pipelines to fetch snapshots, extract text, de-duplicate, identify language, and apply quality filtering based on heuristics and language models. The outputs are intended for pretraining language models and for creating standardized corpora that can be reproduced or...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    wav2letter++

    wav2letter++

    Facebook AI research's automatic speech recognition toolkit

    ...At least one of LZMA, BZip2, or Z is required for LM compression with KenLM. It is highly recommended to build KenLM with position-independent code (-fPIC) enabled, to enable python compatibility. After installing, run export KENLM_ROOT_DIR=... so that wav2letter++ can find it. This is needed because KenLM doesn't support a make install step.wav2letter++ expects audio and transcription data to be prepared in a specific format so that they can be read from the pipelines. Each dataset (test/valid/train) needs to be in a separate file with one sample per line. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Amazon SageMaker Examples

    Amazon SageMaker Examples

    Jupyter notebooks that demonstrate how to build models using SageMaker

    ...They have the familiar Jupyter and JuypterLab interfaces that work well for single users, or small teams where users are also administrators. Advanced users also use SageMaker solely with the AWS CLI and Python scripts using boto3 and/or the SageMaker Python SDK.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Turi Create

    Turi Create

    Simplifies the development of custom machine learning models

    ...If you want your app to recognize specific objects in images, you can build your own model with just a few lines of code. Turi Create supports macOS 10.12+, Linux (with glibc 2.10+), Windows 10 (via WSL). Turi Create requires Python 2.7, 3.5, 3.6, 3.7, 3.8. Also, x86_64 architecture, and at least 4 GB of RAM. We recommend using virtualenv to use, install, or build Turi Create. The package User Guide and API Docs contain more details on how to use Turi Create. If you want to build Turi Create from source, see BUILD.md. Turi Create does not require a GPU, but certain models can be accelerated 9-13x by utilizing a GPU.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    SageMaker MXNet Training Toolkit

    SageMaker MXNet Training Toolkit

    Toolkit for running MXNet training scripts on SageMaker

    ...For the Dockerfiles used for building SageMaker MXNet Containers, see AWS Deep Learning Containers. For information on running MXNet jobs on Amazon SageMaker, please refer to the SageMaker Python SDK documentation. With the SDK, you can train and deploy models using popular deep learning frameworks Apache MXNet and TensorFlow. You can also train and deploy models with Amazon algorithms, which are scalable implementations of core machine learning algorithms that are optimized for SageMaker and GPU training. If you have your own algorithms built into SageMaker compatible Docker containers, you can train and host models using these as well.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    EfficientNet Keras

    EfficientNet Keras

    Implementation of EfficientNet model. Keras and TensorFlow Keras

    This repository contains a Keras (and TensorFlow Keras) reimplementation of EfficientNet, a lightweight convolutional neural network architecture achieving state-of-the-art accuracy with an order of magnitude fewer parameters and FLOPS, on both ImageNet and five other commonly used transfer learning datasets. Convolutional Neural Networks (ConvNets) are commonly developed at a fixed resource budget, and then scaled up for better accuracy if more resources are available. In this paper, we...
    Downloads: 0 This Week
    Last Update:
    See Project