Showing 175 open source projects for "python distributed list"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 1
    Colossal-AI

    Colossal-AI

    Making large AI models cheaper, faster and more accessible

    The Transformer architecture has improved the performance of deep learning models in domains such as Computer Vision and Natural Language Processing. Together with better performance come larger model sizes. This imposes challenges to the memory wall of the current accelerator hardware such as GPU. It is never ideal to train large models such as Vision Transformer, BERT, and GPT on a single GPU or a single machine. There is an urgent demand to train models in a distributed environment. However...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    Substra

    Substra

    Low-level Python library used to interact with a Substra network

    An open-source framework supporting privacy-preserving, traceable federated learning and machine learning orchestration. Offers a Python SDK, high-level FL library (SubstraFL), and web UI to define datasets, models, tasks, and orchestrate secure, auditable collaborations.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    DI-engine

    DI-engine

    OpenDILab Decision AI Engine

    DI-engine is a unified reinforcement learning (RL) platform for reproducible and scalable RL research. It offers modular pipelines for various RL algorithms, with an emphasis on production-level training and evaluation.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    TensorFlow Datasets

    TensorFlow Datasets

    TFDS is a collection of datasets ready to use with TensorFlow,

    TensorFlow Datasets is a collection of datasets ready to use, with TensorFlow or other Python ML frameworks, such as Jax. All datasets are exposed as tf.data. Datasets , enabling easy-to-use and high-performance input pipelines. To get started see the guide and our list of datasets.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 5
    DeepSpeed

    DeepSpeed

    Deep learning optimization library: makes distributed training easy

    DeepSpeed is an easy-to-use deep learning optimization software suite that enables unprecedented scale and speed for Deep Learning Training and Inference. With DeepSpeed you can: 1. Train/Inference dense or sparse models with billions or trillions of parameters 2. Achieve excellent system throughput and efficiently scale to thousands of GPUs 3. Train/Inference on resource constrained GPU systems 4. Achieve unprecedented low latency and high throughput for inference 5. Achieve extreme...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    TorchMetrics AI

    TorchMetrics AI

    Machine learning metrics for distributed, scalable PyTorch application

    TorchMetrics is a collection of 100+ PyTorch metrics implementations and an easy-to-use API to create custom metrics.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    PaLM + RLHF - Pytorch

    PaLM + RLHF - Pytorch

    Implementation of RLHF (Reinforcement Learning with Human Feedback)

    PaLM-rlhf-pytorch is a PyTorch implementation of Pathways Language Model (PaLM) with Reinforcement Learning from Human Feedback (RLHF). It is designed for fine-tuning large-scale language models with human preference alignment, similar to OpenAI’s approach for training models like ChatGPT.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    Cherche

    Cherche

    Neural Search

    Cherche allows the creation of efficient neural search pipelines using retrievers and pre-trained language models as rankers. Cherche's main strength is its ability to build diverse and end-to-end pipelines from lexical matching, semantic matching, and collaborative filtering-based models. Cherche provides modules dedicated to summarization and question answering. These modules are compatible with Hugging Face's pre-trained models and fully integrated into neural search pipelines. Search is...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    DGL

    DGL

    Python package built to ease deep learning on graph

    Build your models with PyTorch, TensorFlow or Apache MXNet. Fast and memory-efficient message passing primitives for training Graph Neural Networks. Scale to giant graphs via multi-GPU acceleration and distributed training infrastructure. DGL empowers a variety of domain-specific projects including DGL-KE for learning large-scale knowledge graph embeddings, DGL-LifeSci for bioinformatics and cheminformatics, and many others. We are keen to bringing graphs closer to deep learning researchers. We...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    fairseq2

    fairseq2

    FAIR Sequence Modeling Toolkit 2

    ... into a large, monolithic codebase—fairseq2 introduces a clean, plugin-oriented architecture designed for long-term maintainability and rapid experimentation. It supports multi-GPU and multi-node distributed training using DDP, FSDP, and tensor parallelism, capable of scaling up to 70B+ parameter models. The framework integrates seamlessly with PyTorch 2.x features such as torch.compile, Fully Sharded Data Parallel (FSDP), and modern configuration management.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    Kubeflow Training Operator

    Kubeflow Training Operator

    Distributed ML Training and Fine-Tuning on Kubernetes

    Kubeflow Training Operator is a Kubernetes-native project for fine-tuning and scalable distributed training of machine learning (ML) models created with various ML frameworks such as PyTorch, TensorFlow, XGBoost, MPI, Paddle, and others.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    NVIDIA FLARE

    NVIDIA FLARE

    NVIDIA Federated Learning Application Runtime Environment

    NVIDIA Federated Learning Application Runtime Environment NVIDIA FLARE is a domain-agnostic, open-source, extensible SDK that allows researchers and data scientists to adapt existing ML/DL workflows(PyTorch, TensorFlow, Scikit-learn, XGBoost etc.) to a federated paradigm. It enables platform developers to build a secure, privacy-preserving offering for a distributed multi-party collaboration. NVIDIA FLARE is built on a componentized architecture that allows you to take federated learning...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    openTSNE

    openTSNE

    Extensible, parallel implementations of t-SNE

    openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor Embedding (t-SNE) [1], a popular dimensionality-reduction algorithm for visualizing high-dimensional data sets. openTSNE incorporates the latest improvements to the t-SNE algorithm, including the ability to add new data points to existing embeddings [2], massive speed improvements [3] [4] [5], enabling t-SNE to scale to millions of data points, and various tricks to improve the global alignment of the resulting...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Synapse Machine Learning

    Synapse Machine Learning

    Simple and distributed Machine Learning

    SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. SynapseML builds on Apache Spark and SparkML to enable new kinds of machine learning, analytics, and model deployment workflows. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with the Open Neural Network Exchange (ONNX), LightGBM, The Cognitive Services, Vowpal Wabbit,...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    Ray

    Ray

    A unified framework for scalable computing

    ... model and reduce training costs by using the latest optimization algorithms. Deploy your machine learning models at scale with Ray Serve, a Python-first and framework agnostic model serving framework. Scale reinforcement learning (RL) with RLlib, a framework-agnostic RL library that ships with 30+ cutting-edge RL algorithms including A3C, DQN, and PPO. Easily build out scalable, distributed systems in Python with simple and composable primitives in Ray Core.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Venom

    Venom

    Venom is the most complete javascript library for Whatsapp

    ... computer systems on the Internet. It uses a set of well-defined operations that apply to all information resources, HTTP itself defines a small set of operations, the most important being post, get, put and delete. Use it in your favorite language like PHP, Python, C# and others. as long as your language is supported with the HTTP protocol, you will save time and money. you don't need to know how Venom works, we have the complete API documentation, in a professional way!
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    Pfl Research

    Pfl Research

    Simulation framework for accelerating research

    A fast, modular Python framework released by Apple for privacy-preserving federated learning (PFL) simulation. Integrates with TensorFlow, PyTorch, and classical ML, and offers high-speed distributed simulation (7–72× faster than alternatives).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    TensorHouse

    TensorHouse

    A collection of reference Jupyter notebooks and demo AI/ML application

    TensorHouse is a scalable reinforcement learning (RL) platform that focuses on high-throughput experience generation and distributed training. It is designed to efficiently train agents across multiple environments and compute resources. TensorHouse enables flexible experiment management, making it suitable for large-scale RL experiments in both research and applied settings.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Lightly

    Lightly

    A python library for self-supervised learning on images

    ... through advanced filtering. We provide PyTorch, PyTorch Lightning and PyTorch Lightning distributed examples for each of the models to kickstart your project. Lightly requires Python 3.6+ but we recommend using Python 3.7+. We recommend installing Lightly in a Linux or OSX environment. With lightly, you can use the latest self-supervised learning methods in a modular way using the full power of PyTorch. Experiment with different backbones, models, and loss functions.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Data-Juicer

    Data-Juicer

    Data processing for and with foundation models

    Data-Juicer is an open-source data processing and augmentation framework designed to enhance the quality and diversity of datasets for machine learning tasks. It includes a modular pipeline for scalable data transformation.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    OpenCompass

    OpenCompass

    OpenCompass is an LLM evaluation platform

    ... scheme of 50+ datasets with about 300,000 questions, comprehensively evaluating the capabilities of the models in five dimensions. One line command to implement task division and distributed evaluation, completing the full evaluation of billion-scale models in just a few hours. Support for zero-shot, few-shot, and chain-of-thought evaluations, combined with standard or dialogue type prompt templates, to easily stimulate the maximum performance of various models.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    BentoML

    BentoML

    Unified Model Serving Framework

    ... to scale separately from the serving logic. Adaptive batching dynamically groups inference requests for optimal performance. Orchestrate distributed inference graph with multiple models via Yatai on Kubernetes. Easily configure CUDA dependencies for running inference with GPU. Automatically generate docker images for production deployment.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    TraceRoot

    TraceRoot

    Find the Root Cause in Your Code's Trace

    ... and latency views, and code-linked insights. Lightweight SDKs for Python and TypeScript enable seamless instrumentation using OpenTelemetry, with support for both self-hosted and cloud deployment. Human-in-the-loop interaction is central: developers can guide reasoning by selecting relevant spans or logs, then verify agent reasoning through traceable context.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    Ludwig

    Ludwig

    A codeless platform to train and test deep learning models

    Ludwig is a toolbox built on top of TensorFlow that allows to train and test deep learning models without the need to write code. All you need to provide is a CSV file containing your data, a list of columns to use as inputs, and a list of columns to use as outputs, Ludwig will do the rest. Simple commands can be used to train models both locally and in a distributed way, and to use them to predict on new data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    NErlNet

    NErlNet

    Nerlnet is a framework for research and development

    NErlNet is a research-grade framework for distributed machine learning over IoT and edge devices. Built with Erlang (Cowboy HTTP), OpenNN, and Python (Flask), it enables simulation of clusters on a single machine or real deployment across heterogeneous devices.
    Downloads: 0 This Week
    Last Update:
    See Project