Showing 7 open source projects for "using"

View related business solutions
  • Retool your internal operations Icon
    Retool your internal operations

    Generate secure, production-grade apps that connect to your business data. Not just prototypes, but tools your team can actually deploy.

    Build internal software that meets enterprise security standards without waiting on engineering resources. Retool connects to your databases, APIs, and data sources while maintaining the permissions and controls you need. Create custom dashboards, admin tools, and workflows from natural language prompts—all deployed in your cloud with security baked in. Stop duct-taping operations together, start building in Retool.
    Build an app in Retool
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 1
    NeuralPDE.jl

    NeuralPDE.jl

    Physics-Informed Neural Networks (PINN) Solvers

    NeuralPDE.jl is a Julia library for solving partial differential equations (PDEs) using physics-informed neural networks and scientific machine learning. Built on top of the SciML ecosystem, it provides a flexible and composable interface for defining PDEs and training neural networks to approximate their solutions. NeuralPDE.jl enables hybrid modeling, data-driven discovery, and fast PDE solvers in high dimensions, making it suitable for scientific research and engineering applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Zygote

    Zygote

    21st century AD

    Zygote provides source-to-source automatic differentiation (AD) in Julia, and is the next-gen AD system for the Flux differentiable programming framework. For more details and benchmarks of Zygote's technique, see our paper. You may want to check out Flux for more interesting examples of Zygote usage; the documentation here focuses on internals and advanced AD usage.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Lux.jl

    Lux.jl

    Elegant and Performant Deep Learning

    Lux.jl is a lightweight and extensible deep learning framework in Julia designed for speed, composability, and clarity. Unlike traditional machine learning libraries that bundle training logic and models, Lux separates model definitions from training routines, encouraging modularity and ease of experimentation. It integrates seamlessly with SciML and other Julia packages, supporting neural differential equations and scientific machine learning workflows.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    Transformers.jl

    Transformers.jl

    Julia Implementation of Transformer models

    Transformers.jl is a Julia library that implements Transformer models for natural language processing tasks. Inspired by architectures like BERT, GPT, and T5, the library offers a modular and flexible interface for building, training, and using transformer-based deep learning models. It supports training from scratch and fine-tuning pretrained models, and integrates with Flux.jl for automatic differentiation and optimization.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • 5
    AutoMLPipeline.jl

    AutoMLPipeline.jl

    Package that makes it trivial to create and evaluate machine learning

    AutoMLPipeline (AMLP) is a package that makes it trivial to create complex ML pipeline structures using simple expressions. It leverages on the built-in macro programming features of Julia to symbolically process, and manipulate pipeline expressions and makes it easy to discover optimal structures for machine learning regression and classification. To illustrate, here is a pipeline expression and evaluation of a typical machine learning workflow that extracts numerical features (numf) for ica (Independent Component Analysis) and pca (Principal Component Analysis) transformations, respectively, concatenated with the hot-bit encoding (ohe) of categorical features (catf) of a given data for rf (Random Forest) modeling.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Gen.jl

    Gen.jl

    A general-purpose probabilistic programming system

    ...Gen helps users write hybrid algorithms that combine neural networks, variational inference, sequential Monte Carlo samplers, and Markov chain Monte Carlo. Gen features an easy-to-use modeling language for writing down generative models, inference models, variational families, and proposal distributions using ordinary code. But it also lets users migrate parts of their model or inference algorithm to specialized modeling languages for which it can generate especially fast code. Users can also hand-code parts of their models that demand better performance. Neural network inference is fast, but can be inaccurate on out-of-distribution data, and requires expensive training.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Knet

    Knet

    Koç University deep learning framework

    ...If you would like to try it on your own computer, please follow the instructions on Installation. If you would like to try working with a GPU and do not have access to one, take a look at Using Amazon AWS or Using Microsoft Azure. If you find a bug, please open a GitHub issue. If you don't have access to a GPU machine, but would like to experiment with one, Amazon Web Services is a possible solution. I have prepared a machine image (AMI) with everything you need to run Knet. Here are step-by-step instructions for launching a GPU instance with a Knet image (the screens may have changed slightly since this writing).
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next