20 projects for "tune" with 2 filters applied:

  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Field Service+ for MS Dynamics 365 & Salesforce Icon
    Field Service+ for MS Dynamics 365 & Salesforce

    Empower your field service with mobility and reliability

    Resco’s mobile solution streamlines your field service operations with offline work, fast data sync, and powerful tools for frontline workers, all natively integrated into Dynamics 365 and Salesforce.
    Learn More
  • 1
    GPT-2

    GPT-2

    Code for the paper Language Models are Unsupervised Multitask Learners

    This repository contains the code and model weights for GPT-2, a large-scale unsupervised language model described in the OpenAI paper “Language Models are Unsupervised Multitask Learners.” The intent is to provide a starting point for researchers and engineers to experiment with GPT-2: generate text, fine‐tune on custom datasets, explore model behavior, or study its internal phenomena. The repository includes scripts for sampling, training, downloading pre-trained models, and utilities for tokenization and model handling. Support for memory-saving gradient techniques/optimizations during training. Sampling/generation scripts (conditional, unconditional, interactive).
    Downloads: 5 This Week
    Last Update:
    See Project
  • 2
    LLM Datasets

    LLM Datasets

    Curated list of datasets and tools for post-training

    LLM Datasets curates and standardizes datasets commonly used to train and fine-tune large language models, reducing the overhead of hunting down sources and normalizing formats. The repository aims to make datasets easy to inspect and transform, with scripts for downloading, deduping, cleaning, and converting to formats like JSONL that slot into training pipelines. It highlights instruction-tuning and conversation-style corpora while also pointing to code, math, or domain-specific sets for targeted capabilities. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    AudioCraft

    AudioCraft

    Audiocraft is a library for audio processing and generation

    ...The repo provides inference scripts, checkpoints, and simple Python APIs so you can generate clips from prompts or incorporate the models into applications. It also contains training code and recipes, so researchers can fine-tune on custom data or explore new objectives without building infrastructure from scratch. Example notebooks, CLI tools, and audio utilities help with prompt design, conditioning on reference audio, and post-processing to produce ready-to-share outputs.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Kimi K2

    Kimi K2

    Kimi K2 is the large language model series developed by Moonshot AI

    ...It was trained on an enormous corpus of over 15.5 trillion tokens to push frontier capabilities in coding, reasoning, and general agentic tasks while addressing training stability through novel optimizer and architecture design strategies. The model family includes variants like a foundational base model that researchers can fine-tune for specific use cases and an instruct-optimized variant primed for general-purpose chat and agent-style interactions, offering flexibility for both experimentation and deployment. With its high-dimensional attention mechanisms and expert routing, Kimi-K2 excels across benchmarks in live coding, math reasoning, and problem solving.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place. Icon
    Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place.

    For healthcare Providers and Facilities

    Incredable streamlines and simplifies the complex process of medical credentialing for hospitals and medical facilities, helping you save valuable time, reduce costs, and minimize risks. With Incredable, you can effortlessly manage all your healthcare providers and their credentials within a single, unified platform. Our state-of-the-art technology ensures top-notch data security, giving you peace of mind.
    Learn More
  • 5
    4M

    4M

    4M: Massively Multimodal Masked Modeling

    ...The design leans into flexibility and steerability, so prompts and masks can shape behavior without bespoke heads per task. In short, 4M provides a unified recipe to pretrain large multimodal models that generalize broadly while remaining practical to fine-tune.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    LLaMA 3

    LLaMA 3

    The official Meta Llama 3 GitHub site

    This repository is the former home for Llama 3 model artifacts and getting-started code, covering pre-trained and instruction-tuned variants across multiple parameter sizes. It introduced the public packaging of weights, licenses, and quickstart examples that helped developers fine-tune or run the models locally and on common serving stacks. As the Llama stack evolved, Meta consolidated repositories and marked this one deprecated, pointing users to newer, centralized hubs for models, utilities, and docs. Even as a deprecated repo, it documents the transition path and preserves references that clarify how Llama 3 releases map into the current ecosystem. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    MetaCLIP

    MetaCLIP

    ICLR2024 Spotlight: curation/training code, metadata, distribution

    ...The repository provides training logic, adaptation strategies (e.g. prompt tuning, adapter modules), and evaluation across base and target domains to measure how well the model retains its general knowledge while specializing as needed. It includes utilities to fine-tune vision-language embeddings, compute prompt or adapter updates, and benchmark across transfer and retention metrics. MetaCLIP is especially suited for real-world settings where a model must continuously incorporate new visual categories or domains over time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    GLM-4.5V

    GLM-4.5V

    GLM-4.6V/4.5V/4.1V-Thinking, towards versatile multimodal reasoning

    GLM-4.5V is the preceding iteration in the GLM-V series that laid much of the groundwork for general multimodal reasoning and vision-language understanding. It embodies the design philosophy of mixing visual and textual modalities into a unified model capable of general-purpose reasoning, content understanding, and generation, while already supporting a wide variety of tasks: from image captioning and visual question answering to content recognition, GUI-based agents, video understanding,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    rLLM

    rLLM

    Democratizing Reinforcement Learning for LLMs

    rLLM is an open-source framework for building and training post-training language agents via reinforcement learning — that is, using reinforcement signals to fine-tune or adapt language models (LLMs) into customizable agents for real-world tasks. With rLLM, developers can define custom “agents” and “environments,” and then train those agents via reinforcement learning workflows, possibly surpassing what vanilla fine-tuning or supervised learning might provide. The project is designed to support large-scale language models (including support for big models via integrated training backends), making it relevant for state-of-the-art research and production use. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Comet Backup - Fast, Secure Backup Software for MSPs Icon
    Comet Backup - Fast, Secure Backup Software for MSPs

    Fast, Secure Backup Software for Businesses and IT Providers

    Comet is a flexible backup platform, giving you total control over your backup environment and storage destinations.
    Learn More
  • 10
    DeepSeek Prover V2

    DeepSeek Prover V2

    Advancing Formal Mathematical Reasoning via Reinforcement Learning

    ...The repository describes how they use recursive proof decomposition by prompting DeepSeek-V3 to break complex theorems into subgoals, synthesize proof sketches, and then combine them to bootstrap training data. They then fine-tune via reinforcement learning with binary correct/incorrect feedback to integrate informal reasoning with formal proof behavior. The repo releases two model sizes (7B and 671B) and provides evaluation performance (e.g. pass rates on MiniF2F, results on ProverBench) as well as prompt / usage examples for proof generation in Lean 4. It also includes a PDF of the paper or project overview and sample formalization datasets. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    UNO

    UNO

    A Universal Customization Method for Single and Multi Conditioning

    ...Because the project is new (see activity logs for 2025), it seems to aim at bridging between single-subject customization and multi-subject generation in generative modeling — potentially useful for personalized content creation, flexible composition, or controlled generation tasks. UNO likely offers tools to fine-tune or condition generation models so that they can incorporate novel subjects, enabling users to produce custom outputs beyond standard training distribution.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    InfiniteYou

    InfiniteYou

    Flexible Photo Recrafting While Preserving Your Identity

    ...Using an architecture built around diffusion transformers (DiTs), InfiniteYou introduces a component called InfuseNet that injects identity features derived from reference images into the generation process — via residual connections — so that the output matches the person’s identity closely, without sacrificing visual quality or text-image alignment. The team uses a multi-stage training strategy with synthetic multi-sample data per identity to fine-tune for both identity consistency and aesthetic quality. Compared to prior methods, InfiniteYou significantly improves on identity similarity, text-prompt adherence, overall image quality, and avoids common problems such as face copy-pasting artifacts.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    FastViT

    FastViT

    This repository contains the official implementation of research

    ...Training and inference recipes highlight straightforward integration into common vision tasks such as classification, detection, and segmentation. The codebase provides reference implementations and checkpoints that make it easy to evaluate or fine-tune on downstream datasets. In practice, FastViT offers drop-in backbones that reduce compute and memory pressure without exotic training tricks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    LM Human Preferences

    LM Human Preferences

    Code for the paper Fine-Tuning Language Models from Human Preferences

    ...Its purpose is to show how to align language models with human judgments by training a reward model from human comparisons and then fine-tuning a policy model using that reward signal. The repository includes scripts to train the reward model (learning to rank or score pairs of outputs), and to fine-tune a policy (a language model) with reinforcement learning (or related techniques) guided by that reward model. The code is provided “as is” and explicitly says it may no longer run out-of-the-box due to dependencies or dataset migrations. It was tested on the smallest GPT-2 (124M parameters) under a specific environment (TensorFlow 1.x, specific CUDA / cuDNN combinations). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    LightSeq

    LightSeq

    A High Performance Library for Sequence Processing and Generation

    ...Lightseq provides optimized CUDA kernels, quantization strategies, and runtime optimizations tailored for transformer operations — which often are bottlenecks in conventional frameworks — thereby reducing memory footprint, improving speed, and making deployment of large-scale models more accessible. Because of this, it’s particularly useful for researchers and developers who want to fine-tune or run transformer-based models without requiring top-tier GPUs or massive computational resources.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Video Pre-Training

    Video Pre-Training

    Learning to Act by Watching Unlabeled Online Videos

    The Video PreTraining (VPT) repository provides code and model artifacts for a project where agents learn to act by watching human gameplay videos—specifically, gameplay of Minecraft—using behavioral cloning. The idea is to learn general priors of control from large-scale, unlabeled video data, and then optionally fine-tune those priors for more goal-directed behavior via environment interaction. The repository contains demonstration models of different widths, fine-tuned variants (e.g. for building houses or early-game tasks), and inference scripts that instantiate agents from pretrained weights. Key modules include the behavioral cloning logic, the agent wrapper, and data loading pipelines (with an accessible skeleton for loading Minecraft demonstration data). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    TensorFlowTTS

    TensorFlowTTS

    Real-Time State-of-the-art Speech Synthesis for Tensorflow 2

    TensorFlowTTS is a state-of-the-art, open-source speech synthesis library built on TensorFlow 2. It offers a variety of architectures for text-to-speech, including classic and modern models such as Tacotron‑2, FastSpeech / FastSpeech2, and neural vocoders like MelGAN and Multiband‑MelGAN. Because it’s based on TensorFlow 2, it can leverage optimizations such as fake-quantization aware training and pruning — which allow models to run faster than real time and to be deployable on mobile or...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    TimeSformer

    TimeSformer

    The official pytorch implementation of our paper

    ...Because the attention is global across frames, TimeSformer can reason about dependencies across long time spans, not just local neighborhoods. The official implementation in PyTorch provides configurations, pretrained models, and training scripts that make it straightforward to evaluate or fine-tune on video datasets. TimeSformer was influential in showing that pure transformer architectures—without convolutional backbones—can perform strongly on video classification tasks. Its flexible attention design allows experimenting with different factoring (spatial-then-temporal, joint, etc.) to trade off compute, memory, and accuracy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    maskrcnn-benchmark

    maskrcnn-benchmark

    Fast, modular reference implementation of Instance Segmentation

    ...Built as a reference implementation, it became a foundation for the next-generation Detectron2, yet remains widely used for research needing a stable, reproducible environment. Visualization tools, model zoo checkpoints, and benchmark scripts make it easy to replicate state-of-the-art results or fine-tune models for custom tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Tired of spending hours of sleep tuning you Robocode Bot? Your bot is full of constants that if wrong tuned would let to awfull performances? BotOptimizer will help you tune the bot, allowing you to define also your optimization algorithm.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next