46 projects for "mirror" with 2 filters applied:

  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Vibes don’t ship, Retool does Icon
    Vibes don’t ship, Retool does

    Start from a prompt and build production-ready apps on your data—with security, permissions, and compliance built in.

    Vibe coding tools create cool demos, but Retool helps you build software your company can actually use. Generate internal apps that connect directly to your data—deployed in your cloud with enterprise security from day one. Build dashboards, admin panels, and workflows with granular permissions already in place. Stop prototyping and ship on a platform that actually passes security review.
    Build apps that ship
  • 1
    DINOv3

    DINOv3

    Reference PyTorch implementation and models for DINOv3

    DINOv3 is the third-generation iteration of Meta’s self-supervised visual representation learning framework, building upon the ideas from DINO and DINOv2. It continues the paradigm of learning strong image representations without labels using teacher–student distillation, but introduces a simplified and more scalable training recipe that performs well across datasets and architectures. DINOv3 removes the need for complex augmentations or momentum encoders, streamlining the pipeline while...
    Downloads: 12 This Week
    Last Update:
    See Project
  • 2
    IndexTTS2

    IndexTTS2

    Industrial-level controllable zero-shot text-to-speech system

    IndexTTS is a modern, zero-shot text-to-speech (TTS) system engineered to deliver high-quality, natural-sounding speech synthesis with few requirements and strong voice-cloning capabilities. It builds on state-of-the-art models such as XTTS and other modern neural TTS backbones, improving them with a conformer-based speech conditional encoder and upgrading the decoder to a high-quality vocoder (BigVGAN2), leading to clearer and more natural audio output. The system supports zero-shot voice...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 3
    Gate22

    Gate22

    Open-source MCP gateway and control plane for teams

    Gate22 is an open-source governance and control plane for Model Context Protocol (MCP) environments that helps teams define and enforce policies about which tools and capabilities AI agents can access, how they can interact with those tools, and how usage is logged and audited. It provides a centralized layer where organizations can configure permission boundaries, role-based access, and operational constraints that govern agent behavior and tool invocation across agentic IDEs or custom...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    DINOv2

    DINOv2

    PyTorch code and models for the DINOv2 self-supervised learning

    DINOv2 is a self-supervised vision learning framework that produces strong, general-purpose image representations without using human labels. It builds on the DINO idea of student–teacher distillation and adapts it to modern Vision Transformer backbones with a carefully tuned recipe for data augmentation, optimization, and multi-crop training. The core promise is that a single pretrained backbone can transfer well to many downstream tasks—from linear probing on classification to retrieval,...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • 5
    SAM 3

    SAM 3

    Code for running inference and finetuning with SAM 3 model

    SAM 3 (Segment Anything Model 3) is a unified foundation model for promptable segmentation in both images and videos, capable of detecting, segmenting, and tracking objects. It accepts both text prompts (open-vocabulary concepts like “red car” or “goalkeeper in white”) and visual prompts (points, boxes, masks) and returns high-quality masks, boxes, and scores for the requested concepts. Compared with SAM 2, SAM 3 introduces the ability to exhaustively segment all instances of an...
    Downloads: 102 This Week
    Last Update:
    See Project
  • 6
    DeepSeek R1

    DeepSeek R1

    Open-source, high-performance AI model with advanced reasoning

    DeepSeek-R1 is an open-source large language model developed by DeepSeek, designed to excel in complex reasoning tasks across domains such as mathematics, coding, and language. DeepSeek R1 offers unrestricted access for both commercial and academic use. The model employs a Mixture of Experts (MoE) architecture, comprising 671 billion total parameters with 37 billion active parameters per token, and supports a context length of up to 128,000 tokens. DeepSeek-R1's training regimen uniquely...
    Downloads: 93 This Week
    Last Update:
    See Project
  • 7
    GLM-4.7

    GLM-4.7

    Advanced language and coding AI model

    GLM-4.7 is an advanced agent-oriented large language model designed as a high-performance coding and reasoning partner. It delivers significant gains over GLM-4.6 in multilingual agentic coding, terminal-based workflows, and real-world developer benchmarks such as SWE-bench and Terminal Bench 2.0. The model introduces stronger “thinking before acting” behavior, improving stability and accuracy in complex agent frameworks like Claude Code, Cline, and Roo Code. GLM-4.7 also advances “vibe...
    Downloads: 782 This Week
    Last Update:
    See Project
  • 8
    DeepSeek-V3

    DeepSeek-V3

    Powerful AI language model (MoE) optimized for efficiency/performance

    DeepSeek-V3 is a robust Mixture-of-Experts (MoE) language model developed by DeepSeek, featuring a total of 671 billion parameters, with 37 billion activated per token. It employs Multi-head Latent Attention (MLA) and the DeepSeekMoE architecture to enhance computational efficiency. The model introduces an auxiliary-loss-free load balancing strategy and a multi-token prediction training objective to boost performance. Trained on 14.8 trillion diverse, high-quality tokens, DeepSeek-V3...
    Downloads: 64 This Week
    Last Update:
    See Project
  • 9
    FLUX.2

    FLUX.2

    Official inference repo for FLUX.2 models

    FLUX.2 is a state-of-the-art open-weight image generation and editing model released by Black Forest Labs aimed at bridging the gap between research-grade capabilities and production-ready workflows. The model offers both text-to-image generation and powerful image editing, including editing of multiple reference images, with fidelity, consistency, and realism that push the limits of what open-source generative models have achieved. It supports high-resolution output (up to ~4 megapixels),...
    Downloads: 53 This Week
    Last Update:
    See Project
  • Skillfully - The future of skills based hiring Icon
    Skillfully - The future of skills based hiring

    Realistic Workplace Simulations that Show Applicant Skills in Action

    Skillfully transforms hiring through AI-powered skill simulations that show you how candidates actually perform before you hire them. Our platform helps companies cut through AI-generated resumes and rehearsed interviews by validating real capabilities in action. Through dynamic job specific simulations and skill-based assessments, companies like Bloomberg and McKinsey have cut screening time by 50% while dramatically improving hire quality.
    Learn More
  • 10
    LTX-2

    LTX-2

    Python inference and LoRA trainer package for the LTX-2 audio–video

    LTX-2 is a powerful, open-source toolkit developed by Lightricks that provides a modular, high-performance base for building real-time graphics and visual effects applications. It is architected to give developers low-level control over rendering pipelines, GPU resource management, shader orchestration, and cross-platform abstractions so they can craft visually compelling experiences without starting from scratch. Beyond basic rendering scaffolding, LTX-2 includes optimized math libraries,...
    Downloads: 38 This Week
    Last Update:
    See Project
  • 11
    Vidi2

    Vidi2

    Large Multimodal Models for Video Understanding and Editing

    Vidi is a family of large multimodal models developed for deep video understanding and editing tasks, integrating vision, audio, and language to allow sophisticated querying and manipulation of video content. It’s designed to process long-form, real-world videos and answer complex queries such as “when in this clip does X happen?” or “where in the frame is object Y during that moment?” — offering temporal retrieval, spatio-temporal grounding (i.e. locating objects over time + space), and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    MARS5

    MARS5

    MARS5 speech model (TTS) from CAMB.AI

    MARS5-TTS is CAMB.AI’s open-source English speech model designed for high-quality text-to-speech and voice emulation. It uses a two-stage architecture that combines an autoregressive (AR) model with a non-autoregressive (NAR) model, giving it both expressiveness and speed. The model is built to handle prosodically challenging content such as sports commentary, anime dialogue, and other high-energy or highly varied speech patterns with realistic rhythm and intonation. To control speaker...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Kimi K2

    Kimi K2

    Kimi K2 is the large language model series developed by Moonshot AI

    Kimi K2 is Moonshot AI’s advanced open-source large language model built on a scalable Mixture-of-Experts (MoE) architecture that combines a trillion total parameters with a subset of ~32 billion active parameters to deliver powerful and efficient performance on diverse tasks. It was trained on an enormous corpus of over 15.5 trillion tokens to push frontier capabilities in coding, reasoning, and general agentic tasks while addressing training stability through novel optimizer and...
    Downloads: 23 This Week
    Last Update:
    See Project
  • 14
    GLM-4.6

    GLM-4.6

    Agentic, Reasoning, and Coding (ARC) foundation models

    GLM-4.6 is the latest iteration of Zhipu AI’s foundation model, delivering significant advancements over GLM-4.5. It introduces an extended 200K token context window, enabling more sophisticated long-context reasoning and agentic workflows. The model achieves superior coding performance, excelling in benchmarks and practical coding assistants such as Claude Code, Cline, Roo Code, and Kilo Code. Its reasoning capabilities have been strengthened, including improved tool usage during inference...
    Downloads: 186 This Week
    Last Update:
    See Project
  • 15
    GLM-4.5

    GLM-4.5

    GLM-4.5: Open-source LLM for intelligent agents by Z.ai

    GLM-4.5 is a cutting-edge open-source large language model designed by Z.ai for intelligent agent applications. The flagship GLM-4.5 model has 355 billion total parameters with 32 billion active parameters, while the compact GLM-4.5-Air version offers 106 billion total parameters and 12 billion active parameters. Both models unify reasoning, coding, and intelligent agent capabilities, providing two modes: a thinking mode for complex reasoning and tool usage, and a non-thinking mode for...
    Downloads: 127 This Week
    Last Update:
    See Project
  • 16
    DeepSeek V2

    DeepSeek V2

    Strong, Economical, and Efficient Mixture-of-Experts Language Model

    DeepSeek-V2 is the second major iteration of DeepSeek’s foundation language model (LLM) series. This version likely includes architectural improvements, training enhancements, and expanded dataset coverage compared to V1. The repository includes model weight artifacts, evaluation benchmarks across a broad suite (e.g. reasoning, math, multilingual), configuration files, and possibly tokenization / inference scripts. The V2 model is expected to support more advanced features like better...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 17
    DeepSeekMath-V2

    DeepSeekMath-V2

    Towards self-verifiable mathematical reasoning

    DeepSeekMath-V2 is a large-scale open-source AI model designed specifically for advanced mathematical reasoning, theorem proving, and rigorous proof verification. It’s built by DeepSeek as a successor to their earlier math-specialist models. Unlike general-purpose LLMs that might generate plausible-looking math but sometimes hallucinate or mishandle rigorous logic, Math-V2 is engineered to not only generate solutions but also self-verify them, meaning it examines the derivations, checks...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 18
    GPT-2

    GPT-2

    Code for the paper Language Models are Unsupervised Multitask Learners

    This repository contains the code and model weights for GPT-2, a large-scale unsupervised language model described in the OpenAI paper “Language Models are Unsupervised Multitask Learners.” The intent is to provide a starting point for researchers and engineers to experiment with GPT-2: generate text, fine‐tune on custom datasets, explore model behavior, or study its internal phenomena. The repository includes scripts for sampling, training, downloading pre-trained models, and utilities for...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 19
    DeepSeek VL2

    DeepSeek VL2

    Mixture-of-Experts Vision-Language Models for Advanced Multimodal

    DeepSeek-VL2 is DeepSeek’s vision + language multimodal model—essentially the next-gen successor to their first vision-language models. It combines image and text inputs into a unified embedding / reasoning space so that you can query with text and image jointly (e.g. “What’s going on in this scene?” or “Generate a caption appropriate to context”). The model supports both image understanding (vision tasks) and multimodal reasoning, and is likely used as a component in agent systems to...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 20
    SAM 2

    SAM 2

    The repository provides code for running inference with SAM 2

    SAM2 is a next-generation version of the Segment Anything Model (SAM), designed to improve performance, generalization, and efficiency in promptable image segmentation tasks. It retains the core promptable interface—accepting points, boxes, or masks—but incorporates architectural and training enhancements to produce higher-fidelity masks, better boundary adherence, and robustness to complex scenes. The updated model is optimized for faster inference and lower memory use, enabling real-time...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 21
    FLUX.1

    FLUX.1

    Official inference repo for FLUX.1 models

    FLUX.1 repository contains inference code and tooling for the FLUX.1 text-to-image diffusion models, enabling developers and researchers to generate and edit images from natural-language prompts using open-weight versions of the model on their own hardware or within custom applications. The project is part of a larger family of FLUX models developed by Black Forest Labs, designed to produce high-quality, detailed visuals from text descriptions with competitive prompt adherence and artistic...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    MiniMax-M2

    MiniMax-M2

    MiniMax-M2, a model built for Max coding & agentic workflows

    MiniMax-M2 is an open-weight large language model designed specifically for high-end coding and agentic workflows while staying compact and efficient. It uses a Mixture-of-Experts (MoE) architecture with 230 billion total parameters but only 10 billion activated per token, giving it the behavior of a very large model at a fraction of the runtime cost. The model is tuned for end-to-end developer flows such as multi-file edits, compile–run–fix loops, and test-validated repairs across real...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    StyleTTS 2

    StyleTTS 2

    Towards Human-Level Text-to-Speech through Style Diffusion

    StyleTTS2 is a state-of-the-art text-to-speech system that aims for human-level naturalness by combining style diffusion, adversarial training, and large speech language models. It extends the original StyleTTS idea by introducing a style diffusion model that can sample rich, realistic speaking styles conditioned on reference speech, allowing highly expressive and diverse prosody. The architecture uses a two-stage training process and leverages an auxiliary speech language model to guide...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    DeepSeek Coder V2

    DeepSeek Coder V2

    DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models

    DeepSeek-Coder-V2 is the version-2 iteration of DeepSeek’s code generation models, refining the original DeepSeek-Coder line with improved architecture, training strategies, and benchmark performance. While the V1 models already targeted strong code understanding and generation, V2 appears to push further in both multilingual support and reasoning in code, likely via architectural enhancements or additional training objectives. The repository provides updated model weights, evaluation...
    Downloads: 22 This Week
    Last Update:
    See Project
  • 25
    MiniMax-01

    MiniMax-01

    Large-language-model & vision-language-model based on Linear Attention

    MiniMax-01 is the official repository for two flagship models: MiniMax-Text-01, a long-context language model, and MiniMax-VL-01, a vision-language model built on top of it. MiniMax-Text-01 uses a hybrid attention architecture that blends Lightning Attention, standard softmax attention, and Mixture-of-Experts (MoE) routing to achieve both high throughput and long-context reasoning. It has 456 billion total parameters with 45.9 billion activated per token and is trained with advanced parallel...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next