653 projects for "google-visualization-python" with 2 filters applied:

  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 1
    ArXiv MCP Server

    ArXiv MCP Server

    A Model Context Protocol server for searching and analyzing arXiv

    arxiv-mcp-server bridges AI assistants and the arXiv repository through a clean MCP interface, enabling search, metadata retrieval, and content access without bespoke scraping. With simple tools like “search” and “fetch,” an agent can find papers, pull abstracts, and download PDFs for downstream summarization or analysis. The project includes packaging and CI to publish to PyPI, plus tests and linting for reliability. Issue threads show feature requests such as extracting embedded LaTeX and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    4M

    4M

    4M: Massively Multimodal Masked Modeling

    4M is a training framework for “any-to-any” vision foundation models that uses tokenization and masking to scale across many modalities and tasks. The same model family can classify, segment, detect, caption, and even generate images, with a single interface for both discriminative and generative use. The repository releases code and models for multiple variants (e.g., 4M-7 and 4M-21), emphasizing transfer to unseen tasks and modalities. Training/inference configs and issues discuss things...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    MGIE

    MGIE

    Guiding Instruction-based Image Editing via Multimodal Large Language

    MGIE—Guiding Instruction-based Image Editing—demonstrates how a multimodal LLM can parse natural-language editing instructions and then drive image transformations accordingly. The project focuses on making edits explainable and controllable: the model interprets text guidance, reasons over image content, and outputs edits aligned with user intent. It’s positioned as an ICLR 2024 Spotlight work, with code and references that show how to connect language planning to concrete image operations....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    ML Ferret

    ML Ferret

    Refer and Ground Anything Anywhere at Any Granularity

    Ferret is Apple’s end-to-end multimodal large language model designed specifically for flexible referring and grounding: it can understand references of any granularity (boxes, points, free-form regions) and then ground open-vocabulary descriptions back onto the image. The core idea is a hybrid region representation that mixes discrete coordinates with continuous visual features, so the model can fluidly handle “any-form” referring while maintaining precise spatial localization. The repo...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    LLaMA 3

    LLaMA 3

    The official Meta Llama 3 GitHub site

    This repository is the former home for Llama 3 model artifacts and getting-started code, covering pre-trained and instruction-tuned variants across multiple parameter sizes. It introduced the public packaging of weights, licenses, and quickstart examples that helped developers fine-tune or run the models locally and on common serving stacks. As the Llama stack evolved, Meta consolidated repositories and marked this one deprecated, pointing users to newer, centralized hubs for models,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    LLaMA Models

    LLaMA Models

    Utilities intended for use with Llama models

    This repository serves as the central hub for the Llama foundation model family, consolidating model cards, licenses and use policies, and utilities that support inference and fine-tuning across releases. It ties together other stack components (like safety tooling and developer SDKs) and provides canonical references for model variants and their intended usage. The project’s issues and releases reflect an actively used coordination point for the ecosystem, where guidance, utilities, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    MaxKB

    MaxKB

    Open-source platform for building enterprise-grade agents

    MaxKB (Max Knowledge Brain) is an open-source platform for building enterprise-grade AI agents with strong knowledge retrieval, RAG pipelines, and workflow orchestration. It focuses on practical deployments such as customer support, internal knowledge bases, research assistants, and education, bundling tools for data ingestion, chunking, embedding, retrieval, and answer synthesis. The system exposes flexible tool-use (including MCP), supports multi-model backends, and provides dashboards for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    MetaCLIP

    MetaCLIP

    ICLR2024 Spotlight: curation/training code, metadata, distribution

    MetaCLIP is a research codebase that extends the CLIP framework into a meta-learning / continual learning regime, aiming to adapt CLIP-style models to new tasks or domains efficiently. The goal is to preserve CLIP’s strong zero-shot transfer capability while enabling fast adaptation to domain shifts or novel class sets with minimal data and without catastrophic forgetting. The repository provides training logic, adaptation strategies (e.g. prompt tuning, adapter modules), and evaluation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    JEPA

    JEPA

    PyTorch code and models for V-JEPA self-supervised learning from video

    JEPA (Joint-Embedding Predictive Architecture) captures the idea of predicting missing high-level representations rather than reconstructing pixels, aiming for robust, scalable self-supervised learning. A context encoder ingests visible regions and predicts target embeddings for masked regions produced by a separate target encoder, avoiding low-level reconstruction losses that can overfit to texture. This makes learning focus on semantics and structure, yielding features that transfer well...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • 10
    Flow Matching

    Flow Matching

    A PyTorch library for implementing flow matching algorithms

    flow_matching is a PyTorch library implementing flow matching algorithms in both continuous and discrete settings, enabling generative modeling via matching vector fields rather than diffusion. The underlying idea is to parameterize a flow (a time-dependent vector field) that transports samples from a simple base distribution to a target distribution, and train via matching of flows without requiring score estimation or noisy corruption—this can lead to more efficient or stable generative...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    DLRM

    DLRM

    An implementation of a deep learning recommendation model (DLRM)

    DLRM (Deep Learning Recommendation Model) is Meta’s open-source reference implementation for large-scale recommendation systems built to handle extremely high-dimensional sparse features and embedding tables. The architecture combines dense (MLP) and sparse (embedding) branches, then interacts features via dot product or feature interactions before passing through further dense layers to predict click-through, ranking scores, or conversion probabilities. The implementation is optimized for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    DeiT (Data-efficient Image Transformers)
    DeiT (Data-efficient Image Transformers) shows that Vision Transformers can be trained competitively on ImageNet-1k without external data by using strong training recipes and knowledge distillation. Its key idea is a specialized distillation strategy—including a learnable “distillation token”—that lets a transformer learn effectively from a CNN or transformer teacher on modest-scale datasets. The project provides compact ViT variants (Tiny/Small/Base) that achieve excellent...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    VGGT

    VGGT

    [CVPR 2025 Best Paper Award] VGGT

    VGGT is a transformer-based framework aimed at unifying classic visual geometry tasks—such as depth estimation, camera pose recovery, point tracking, and correspondence—under a single model. Rather than training separate networks per task, it shares an encoder and leverages geometric heads/decoders to infer structure and motion from images or short clips. The design emphasizes consistent geometric reasoning: outputs from one head (e.g., correspondences or tracks) reinforce others (e.g., pose...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Animated Drawings

    Animated Drawings

    Code to accompany "A Method for Animating Children's Drawings"

    AnimatedDrawings is a framework that converts user sketches or line drawings into fully animated 2D motion sequences using learned motion priors. The idea is that you draw a simple static figure (stick figure, silhouette, or contour lines), and the system produces plausible skeletal motion (walking, jumping, dancing) that adheres to the drawn shape constraints. The architecture separates shape embedding (to understand user-drawn geometry) from motion embedding / generation (to produce...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Segment Anything

    Segment Anything

    Provides code for running inference with the SegmentAnything Model

    ...A bundled automatic mask generator can sweep an image and propose many object masks, which is useful for dataset bootstrapping or bulk annotation. The repository includes ready-to-use weights, Python APIs, and example notebooks demonstrating both interactive and automatic modes. Because SAM was trained with an extremely large and diverse mask dataset, it tends to generalize well to new domains, making it a practical starting point for research and production annotation tools.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Prompt Engineering Interactive Tutorial

    Prompt Engineering Interactive Tutorial

    Anthropic's Interactive Prompt Engineering Tutorial

    Prompt-eng-interactive-tutorial is a comprehensive, hands-on tutorial that teaches the craft of prompt engineering with Claude through guided, executable lessons. It starts with the anatomy of a good prompt and moves into techniques that deliver the “80/20” gains—separating instructions from data, specifying schemas, and setting evaluation criteria. The course leans heavily on realistic failure modes (ambiguity, hallucination, brittle instructions) and shows how to iteratively debug prompts...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Courses (Anthropic)

    Courses (Anthropic)

    Anthropic's educational courses

    Anthropic’s courses repository is a growing collection of self-paced learning materials that teach practical AI skills using Claude and the Anthropic API. It’s organized as a sequence of hands-on courses—starting with API fundamentals and prompt engineering—so learners build capability step by step rather than in isolation. Each course mixes short readings with runnable notebooks and exercises, guiding you through concepts like model parameters, streaming, multimodal prompts, structured...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Mistral Finetune

    Mistral Finetune

    Memory-efficient and performant finetuning of Mistral's models

    mistral-finetune is an official lightweight codebase designed for memory-efficient and performant finetuning of Mistral’s open models (e.g. 7B, instruct variants). It builds on techniques like LoRA (Low-Rank Adaptation) to allow customizing models without full parameter updates, which reduces GPU memory footprint and training cost. The repo includes utilities for data preprocessing (e.g. reformat_data.py), validation scripts, and example YAML configs for training variants like 7B base or...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    HunyuanDiT

    HunyuanDiT

    Diffusion Transformer with Fine-Grained Chinese Understanding

    HunyuanDiT is a high-capability text-to-image diffusion transformer with bilingual (Chinese/English) understanding and multi-turn dialogue capability. It trains a diffusion model in latent space using a transformer backbone and integrates a Multimodal Large Language Model (MLLM) to refine captions and support conversational image generation. It supports adapters like ControlNet, IP-Adapter, LoRA, and can run under constrained VRAM via distillation versions. LoRA, ControlNet (pose, depth,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Transformers4Rec

    Transformers4Rec

    Transformers4Rec is a flexible and efficient library

    Transformers4Rec is an advanced recommendation system library that leverages Transformer models for sequential and session-based recommendations. The library works as a bridge between natural language processing (NLP) and recommender systems (RecSys) by integrating with one of the most popular NLP frameworks, Hugging Face Transformers (HF). Transformers4Rec makes state-of-the-art transformer architectures available for RecSys researchers and industry practitioners. Traditional recommendation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Poetiq

    Poetiq

    Reproduction of Poetiq's record-breaking submission to the ARC-AGI-1

    poetiq-arc-agi-solver is the open-source codebase from Poetiq that replicates their record-breaking submission to the challenging benchmark suite ARC-AGI (both ARC-AGI-1 and ARC-AGI-2). The project demonstrates a system that orchestrates large language models (LLMs) — like those from major providers — with carefully engineered prompting, reasoning workflows, and dynamic strategies, to tackle the abstract, logic-heavy problems in ARC-AGI. Instead of relying on a single prompt or fixed...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    PokeeResearch-7B

    PokeeResearch-7B

    Pokee Deep Research Model Open Source Repo

    PokeeResearchOSS provides an open-source, agentic “deep research” model centered on a 7B backbone that can browse, read, and synthesize current information from the web. Instead of relying only on static training data, the agent performs searches, visits pages, and extracts evidence before forming answers to complex queries. It is built to operate end-to-end: planning a research strategy, gathering sources, reasoning over conflicting claims, and writing a grounded response. The repository...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    verl

    verl

    Volcano Engine Reinforcement Learning for LLMs

    VERL is a reinforcement-learning–oriented toolkit designed to train and align modern AI systems, from language models to decision-making agents. It brings together supervised fine-tuning, preference modeling, and online RL into one coherent training stack so teams can move from raw data to aligned policies with minimal glue code. The library focuses on scalability and efficiency, offering distributed training loops, mixed precision, and replay/buffering utilities that keep accelerators busy....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    OSS-Fuzz Gen

    OSS-Fuzz Gen

    LLM powered fuzzing via OSS-Fuzz

    OSS-Fuzz-Gen is a companion project that helps automatically create or improve fuzz targets for open-source codebases, aiming to increase coverage in OSS-Fuzz with minimal maintainer effort. It analyses a library’s APIs, examples, and tests to propose harnesses that exercise parsers, decoders, or protocol handlers—precisely the code where fuzzing pays off. The system integrates with modern LLM-assisted workflows to draft harness code and then iterates based on build errors or low coverage...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    BIG-bench

    BIG-bench

    Beyond the Imitation Game collaborative benchmark for measuring

    BIG-bench (Beyond the Imitation Game Benchmark) is a large, collaborative benchmark suite designed to probe the capabilities and limitations of large language models across hundreds of diverse tasks. Rather than focusing on a single metric or domain, it aggregates many hand-authored tasks that test reasoning, commonsense, math, linguistics, ethics, and creativity. Tasks are intentionally heterogeneous: some are multiple-choice with exact scoring, others are free-form generation judged by...
    Downloads: 0 This Week
    Last Update:
    See Project