74 projects for "python image editor" with 2 filters applied:

  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • Inventors: Validate Your Idea, Protect It and Gain Market Advantages Icon
    Inventors: Validate Your Idea, Protect It and Gain Market Advantages

    SenseIP is ideal for individual inventors, startups, and businesses

    senseIP is an AI innovation platform for inventors, automating any aspect of IP from the moment you have an idea. You can have it researched for uniqueness and protected; quickly and effortlessly, without expensive attorneys. Built for business success while securing your competitive edge.
    Learn More
  • 1
    Map-Anything

    Map-Anything

    MapAnything: Universal Feed-Forward Metric 3D Reconstruction

    Map-Anything is a universal, feed-forward transformer for metric 3D reconstruction that predicts a scene’s geometry and camera parameters directly from visual inputs. Instead of stitching together many task-specific models, it uses a single architecture that supports a wide range of 3D tasks—multi-image structure-from-motion, multi-view stereo, monocular metric depth, registration, depth completion, and more. The model flexibly accepts different input combinations (images, intrinsics, poses,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    DreamCraft3D

    DreamCraft3D

    Official implementation of DreamCraft3D

    DreamCraft3D is DeepSeek’s generative 3D modeling framework / model family that likely extends their earlier 3D efforts (e.g. Shap-E or Point-E style models) with more capability, control, or expression. The name suggests a “dream crafting” metaphor—users probably supply textual or image prompts and generate 3D assets (point clouds, meshes, scenes). The repository includes model code, inference scripts, sample prompts, and possibly dataset preparation pipelines. It may integrate rendering or...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    CodeLlama

    CodeLlama

    Inference code for CodeLlama models

    ...The ecosystem provides multiple distributions (e.g., HF format) so developers can integrate with standard toolchains and serving stacks. As part of the broader Llama effort, Code Llama complements instruction-tuned chat models by focusing on code-centric tasks and editor integrations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Janus

    Janus

    Unified Multimodal Understanding and Generation Models

    Janus is a sophisticated open-source project from DeepSeek AI that aims to unify both visual understanding and image generation in a single model architecture. Rather than having separate systems for “look and describe” and “prompt and generate”, Janus uses an autoregressive transformer framework with a decoupled visual encoder—allowing it to ingest images for comprehension and to produce images from text prompts with shared internal representations. The design tackles long-standing...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Most modern and flexible cloud platform for MLM companies Icon
    Most modern and flexible cloud platform for MLM companies

    ERP-class software for multi-level marketing

    For direct selling (MLM) companies, from startup to well established enterprises with millions of distributors across the world
    Learn More
  • 5
    Depth Pro

    Depth Pro

    Sharp Monocular Metric Depth in Less Than a Second

    Depth Pro is a foundation model for zero-shot metric monocular depth estimation, producing sharp, high-frequency depth maps with absolute scale from a single image. Unlike many prior approaches, it does not require camera intrinsics or extra metadata, yet still outputs metric depth suitable for downstream 3D tasks. Apple highlights both accuracy and speed: the model can synthesize a ~2.25-megapixel depth map in around 0.3 seconds on a standard GPU, enabling near real-time applications. The...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Vision Transformer Pytorch

    Vision Transformer Pytorch

    Implementation of Vision Transformer, a simple way to achieve SOTA

    This repository provides a from-scratch, minimalist implementation of the Vision Transformer (ViT) in PyTorch, focusing on the core architectural pieces needed for image classification. It breaks down the model into patch embedding, positional encoding, multi-head self-attention, feed-forward blocks, and a classification head so you can understand each component in isolation. The code is intentionally compact and modular, which makes it easy to tinker with hyperparameters, depth, width, and...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Make-A-Video - Pytorch (wip)

    Make-A-Video - Pytorch (wip)

    Implementation of Make-A-Video, new SOTA text to video generator

    Implementation of Make-A-Video, new SOTA text to video generator from Meta AI, in Pytorch. They combine pseudo-3d convolutions (axial convolutions) and temporal attention and show much better temporal fusion. The pseudo-3d convolutions isn't a new concept. It has been explored before in other contexts, say for protein contact prediction as "dimensional hybrid residual networks". The gist of the paper comes down to, take a SOTA text-to-image model (here they use DALL-E2, but the same learning...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Shap-E

    Shap-E

    Generate 3D objects conditioned on text or images

    The shap-e repository provides the official code and model release for Shap-E, a conditional generative model designed to produce 3D assets (implicit functions, meshes, neural radiance fields) from text or image prompts. The model is built with a two-stage architecture: first an encoder that maps existing 3D assets into parameterizations of implicit functions, and then a conditional diffusion model trained on those parameterizations to generate new assets. Because it works at the level of...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    Hiera

    Hiera

    A fast, powerful, and simple hierarchical vision transformer

    Hiera is a hierarchical vision transformer designed to be fast, simple, and strong across image and video recognition tasks. The core idea is to use straightforward hierarchical attention with a minimal set of architectural “bells and whistles,” achieving competitive or superior accuracy while being markedly faster at inference and often faster to train. The repository provides installation options (from source or Torch Hub), a model zoo with pre-trained checkpoints, and code for evaluation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • BoldTrail Real Estate CRM Icon
    BoldTrail Real Estate CRM

    A first-of-its-kind homeownership solution that puts YOU at the center of the coveted lifetime consumer relationship.

    BoldTrail, the #1 rated real estate platform, is built to power your entire brokerage with next-generation technology your agents will use and love. Showcase your unique brand with customizable websites for your company, offices, and every agent. Maximize lead capture with a modern, portal-like consumer search experience and intelligent behavior tracking. Hyper-local area pages, home valuation pages and options for rich lifestyle data keep customers searching with your brokerage as the local experts. The most robust lead gen tools on the market help your brokerage, teams & agents effectively drive new business - no matter their budget. Empower your agents to generate free leads instantly with our simple to use landing pages & IDX squeeze pages. Drive more leads with higher quality and lower cost through in-house tools built within the platform. Diversify lead sources with our automated social media posting, integrated Google and Facebook advertising, custom text codes and more.
    Learn More
  • 10
    ML Ferret

    ML Ferret

    Refer and Ground Anything Anywhere at Any Granularity

    Ferret is Apple’s end-to-end multimodal large language model designed specifically for flexible referring and grounding: it can understand references of any granularity (boxes, points, free-form regions) and then ground open-vocabulary descriptions back onto the image. The core idea is a hybrid region representation that mixes discrete coordinates with continuous visual features, so the model can fluidly handle “any-form” referring while maintaining precise spatial localization. The repo...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    JEPA

    JEPA

    PyTorch code and models for V-JEPA self-supervised learning from video

    JEPA (Joint-Embedding Predictive Architecture) captures the idea of predicting missing high-level representations rather than reconstructing pixels, aiming for robust, scalable self-supervised learning. A context encoder ingests visible regions and predicts target embeddings for masked regions produced by a separate target encoder, avoiding low-level reconstruction losses that can overfit to texture. This makes learning focus on semantics and structure, yielding features that transfer well...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    DINOv2

    DINOv2

    PyTorch code and models for the DINOv2 self-supervised learning

    DINOv2 is a self-supervised vision learning framework that produces strong, general-purpose image representations without using human labels. It builds on the DINO idea of student–teacher distillation and adapts it to modern Vision Transformer backbones with a carefully tuned recipe for data augmentation, optimization, and multi-crop training. The core promise is that a single pretrained backbone can transfer well to many downstream tasks—from linear probing on classification to retrieval,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Large Concept Model

    Large Concept Model

    Language modeling in a sentence representation space

    Large Concept Model is a research codebase centered on concept-centric representation learning at scale, aiming to capture shared structure across many categories and modalities. It organizes training around concepts (rather than just raw labels), encouraging models to understand attributes, relations, and compositional structure that transfer across tasks. The repository provides training loops, data tooling, and evaluation routines to learn and probe these concept embeddings, typically...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    SAM 2

    SAM 2

    The repository provides code for running inference with SAM 2

    SAM2 is a next-generation version of the Segment Anything Model (SAM), designed to improve performance, generalization, and efficiency in promptable image segmentation tasks. It retains the core promptable interface—accepting points, boxes, or masks—but incorporates architectural and training enhancements to produce higher-fidelity masks, better boundary adherence, and robustness to complex scenes. The updated model is optimized for faster inference and lower memory use, enabling real-time...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Stable Diffusion

    Stable Diffusion

    High-Resolution Image Synthesis with Latent Diffusion Models

    Stable Diffusion Version 2. The Stable Diffusion project, developed by Stability AI, is a cutting-edge image synthesis model that utilizes latent diffusion techniques for high-resolution image generation. It offers an advanced method of generating images based on text input, making it highly flexible for various creative applications. The repository contains pretrained models, various checkpoints, and tools to facilitate image generation tasks, such as fine-tuning and modifying the models....
    Downloads: 101 This Week
    Last Update:
    See Project
  • 16
    AnimateDiff

    AnimateDiff

    Plug-n-play module turning text-to-image models into animation

    AnimateDiff is an open-source project designed to enhance text-to-image diffusion models by adding animation capabilities. It allows users to turn static images generated by popular text-to-image models into animated sequences without requiring additional model training. This plug-and-play tool is compatible with a wide range of community models and facilitates the generation of animation directly from pre-existing text-to-image models. It supports various configurations to create animations...
    Downloads: 16 This Week
    Last Update:
    See Project
  • 17
    SMILI

    SMILI

    Scientific Visualisation Made Easy

    The Simple Medical Imaging Library Interface (SMILI), pronounced 'smilie', is an open-source, light-weight and easy-to-use medical imaging viewer and library for all major operating systems. The main sMILX application features for viewing n-D images, vector images, DICOMs, anonymizing, shape analysis and models/surfaces with easy drag and drop functions. It also features a number of standard processing algorithms for smoothing, thresholding, masking etc. images and models, both with...
    Leader badge
    Downloads: 11 This Week
    Last Update:
    See Project
  • 18
    FLUX.1 Krea

    FLUX.1 Krea

    Powerful open source image generation model

    FLUX.1 Krea [dev] is an open-source 12-billion parameter image generation model developed collaboratively by Krea and Black Forest Labs, designed to deliver superior aesthetic control and high image quality. It is a rectified-flow model distilled from the original Krea 1, providing enhanced sampling efficiency through classifier-free guidance distillation. The model supports generation at resolutions between 1024 and 1280 pixels with recommended inference steps between 28 and 32 for optimal...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 19
    HunyuanVideo-I2V

    HunyuanVideo-I2V

    A Customizable Image-to-Video Model based on HunyuanVideo

    HunyuanVideo-I2V is a customizable image-to-video generation framework developed by Tencent, extending the capabilities of HunyuanVideo. It allows for high-quality video creation from still images, using PyTorch and providing pre-trained model weights, inference code, and customizable training options. The system includes a LoRA training code for adding special effects and enhancing video realism, aiming to offer versatile and scalable solutions for generating videos from static image inputs.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 20
    ControlNet

    ControlNet

    Let us control diffusion models

    ControlNet is a neural network architecture designed to add conditional control to text-to-image diffusion models. Rather than training from scratch, ControlNet “locks” the weights of a pre-trained diffusion model and introduces a parallel trainable branch that learns additional conditions—like edges, depth maps, segmentation, human pose, scribbles, or other guidance signals. This allows the system to control where and how the model should focus during generation, enabling users to steer...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 21
    VideoCrafter2

    VideoCrafter2

    Overcoming Data Limitations for High-Quality Video Diffusion Models

    VideoCrafter is an open-source video generation and editing toolbox designed to create high-quality video content. It features models for both text-to-video and image-to-video generation. The system is optimized for generating videos from textual descriptions or still images, leveraging advanced diffusion models. VideoCrafter2, an upgraded version, improves on its predecessor by enhancing motion dynamics and concept combinations, especially in low-data scenarios. Users can explore a wide...
    Downloads: 15 This Week
    Last Update:
    See Project
  • 22
    Detic

    Detic

    Code release for "Detecting Twenty-thousand Classes

    Detic (“Detecting Twenty-thousand Classes using Image-level Supervision”) is a large-vocabulary object detector that scales beyond fully annotated datasets by leveraging image-level labels. It decouples localization from classification, training a strong box localizer on standard detection data while learning classifiers from weak supervision and large image-tag corpora. A shared region proposal backbone feeds a flexible classification head that can expand to tens of thousands of categories...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Consistency Models

    Consistency Models

    Official repo for consistency models

    consistency_models is the repository for Consistency Models, a new family of generative models introduced by OpenAI that aim to generate high-quality samples by mapping noise directly into data — circumventing the need for lengthy diffusion chains. It builds on and extends diffusion model frameworks (e.g. based on the guided-diffusion codebase), adding techniques like consistency distillation and consistency training to enable fast, often one-step, sample generation. The repo is implemented...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    DiT (Diffusion Transformers)

    DiT (Diffusion Transformers)

    Official PyTorch Implementation of "Scalable Diffusion Models"

    DiT (Diffusion Transformer) is a powerful architecture that applies transformer-based modeling directly to diffusion generative processes for high-quality image synthesis. Unlike CNN-based diffusion models, DiT represents the diffusion process in the latent space and processes image tokens through transformer blocks with learned positional encodings, offering scalability and superior sample quality. The model architecture parallels large language models but for image tokens—each block...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    PIFuHD

    PIFuHD

    High-Resolution 3D Human Digitization from A Single Image

    PIFuHD (Pixel-Aligned Implicit Function for 3D human reconstruction at high resolution) is a method and codebase to reconstruct high-fidelity 3D human meshes from a single image. It extends prior PIFu work by increasing resolution and detail, enabling fine geometry in cloth folds, hair, and subtle surface features. The method operates by learning an implicit occupancy / surface function conditioned on the image and camera projection; at inference time it queries dense points to reconstruct a...
    Downloads: 6 This Week
    Last Update:
    See Project