Showing 91 open source projects for "prediction"

View related business solutions
  • Our Free Plans just got better! | Auth0 by Okta Icon
    Our Free Plans just got better! | Auth0 by Okta

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your secuirty. Auth0 now, thank yourself later.
    Try free now
  • Deliver secure remote access with OpenVPN. Icon
    Deliver secure remote access with OpenVPN.

    Trusted by nearly 20,000 customers worldwide, and all major cloud providers.

    OpenVPN's products provide scalable, secure remote access — giving complete freedom to your employees to work outside the office while securely accessing SaaS, the internet, and company resources.
    Get started — no credit card required.
  • 1
    Basic Pitch

    Basic Pitch

    A lightweight audio-to-MIDI converter with pitch bend detection

    Basic Pitch is a Python library for Automatic Music Transcription (AMT), using lightweight neural network developed by Spotify's Audio Intelligence Lab. It's small, easy-to-use, pip install-able and npm install-able via its sibling repo. Basic Pitch may be simple, but it's is far from "basic"! basic-pitch is efficient and easy to use, and its multi pitch support, its ability to generalize across instruments, and its note accuracy compete with much larger and more resource-hungry AMT systems....
    Downloads: 10 This Week
    Last Update:
    See Project
  • 2
    Chemprop

    Chemprop

    Message Passing Neural Networks for Molecule Property Prediction

    Chemprop is a repository containing message-passing neural networks for molecular property prediction.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    ChemCrow

    ChemCrow

    Chemcrow

    ChemCrow is an AI-powered framework designed to assist in chemical research and discovery. It integrates AI models with chemical knowledge bases to provide intelligent recommendations for synthesis planning, reaction prediction, and material discovery. This tool helps automate and accelerate research in computational chemistry and drug development.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4

    LightGBM

    Gradient boosting framework based on decision tree algorithms

    LightGBM or Light Gradient Boosting Machine is a high-performance, open source gradient boosting framework based on decision tree algorithms. Compared to other boosting frameworks, LightGBM offers several advantages in terms of speed, efficiency and accuracy. Parallel experiments have shown that LightGBM can attain linear speed-up through multiple machines for training in specific settings, all while consuming less memory. LightGBM supports parallel and GPU learning, and can handle...
    Downloads: 4 This Week
    Last Update:
    See Project
  • Smart Monitoring for Any Network. Powered by Open Source. Icon
    Smart Monitoring for Any Network. Powered by Open Source.

    Trusted by thousands of IT teams worldwide

    NMIS helps with fault, performance, and configuration management. It provides performance graphs, threshold alerting, and detailed notification policies with various methods. NMIS monitors an organization’s IT environment, helps identify and rectify faults, and provides valuable information for IT planning.
    Get a Free Trial
  • 5
    NGBoost

    NGBoost

    Natural Gradient Boosting for Probabilistic Prediction

    ngboost is a Python library that implements Natural Gradient Boosting, as described in "NGBoost: Natural Gradient Boosting for Probabilistic Prediction". It is built on top of Scikit-Learn and is designed to be scalable and modular with respect to the choice of proper scoring rule, distribution, and base learner. A didactic introduction to the methodology underlying NGBoost is available in this slide deck.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    SAHI

    SAHI

    A lightweight vision library for performing large object detection

    A lightweight vision library for performing large-scale object detection & instance segmentation. Object detection and instance segmentation are by far the most important fields of applications in Computer Vision. However, detection of small objects and inference on large images are still major issues in practical usage. Here comes the SAHI to help developers overcome these real-world problems with many vision utilities. Detection of small objects and objects far away in the scene is a major...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    OGB

    OGB

    Benchmark datasets, data loaders, and evaluators for graph machine

    ... that are of varying sizes and cover a variety graph machine learning tasks, including prediction of node, link, and graph properties. OGB fully automates dataset processing. The OGB data loaders automatically download and process graphs, provide graph objects that are fully compatible with Pytorch Geometric and DGL. OGB provides standardized dataset splits and evaluators that allow for easy and reliable comparison of different models in a unified manner.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    CatBoost

    CatBoost

    High-performance library for gradient boosting on decision trees

    CatBoost is a fast, high-performance open source library for gradient boosting on decision trees. It is a machine learning method with plenty of applications, including ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. CatBoost offers superior performance over other GBDT libraries on many datasets, and has several superb features. It has best in class prediction speed, supports both numerical and categorical features, has a fast and scalable GPU...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    TextGen

    TextGen

    textgen, Text Generation models

    ... with synonyms, random word insertion, deletion, replacement, etc. method, generating new text and implementing text augmentation This project realizes the back translation function based on Baidu translation API, first translate Chinese sentences into English, and then translate English into new Chinese. This project implements the training and prediction of Seq2Seq, ConvSeq2Seq, and BART models based on PyTorch, which can be used for text generation tasks such as text translation.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Power Up Your AI with Databricks – Free Trial Icon
    Power Up Your AI with Databricks – Free Trial

    Ready to revolutionize your data and AI game? Test Databricks free on your cloud of choice and see the difference.

    Take your data and AI to the next level with Databricks – free trial on AWS, Azure, or Google Cloud. Create production-ready Generative AI apps that are accurate, secure, and tailored to your business. Simplify data ingestion from hundreds of sources with effortless ETL automation. Plus, tap into instant, elastic serverless compute during your trial (available on AWS/Azure). Sign up with your work email now to unlock premium trial perks and transform how you work with data – don’t wait!
    Get Started
  • 10
    Python Outlier Detection

    Python Outlier Detection

    A Python toolbox for scalable outlier detection

    PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. This exciting yet challenging field is commonly referred as outlier detection or anomaly detection. PyOD includes more than 30 detection algorithms, from classical LOF (SIGMOD 2000) to the latest COPOD (ICDM 2020) and SUOD (MLSys 2021). Since 2017, PyOD [AZNL19] has been successfully used in numerous academic researches and commercial products [AZHC+21, AZNHL19]. PyOD has multiple neural...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Make-A-Video - Pytorch (wip)

    Make-A-Video - Pytorch (wip)

    Implementation of Make-A-Video, new SOTA text to video generator

    Implementation of Make-A-Video, new SOTA text to video generator from Meta AI, in Pytorch. They combine pseudo-3d convolutions (axial convolutions) and temporal attention and show much better temporal fusion. The pseudo-3d convolutions isn't a new concept. It has been explored before in other contexts, say for protein contact prediction as "dimensional hybrid residual networks". The gist of the paper comes down to, take a SOTA text-to-image model (here they use DALL-E2, but the same learning...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    High-Level Training Utilities Pytorch

    High-Level Training Utilities Pytorch

    High-level training, data augmentation, and utilities for Pytorch

    ... loading, or sampling functions. ModuleTrainer. The ModuleTrainer class provides a high-level training interface that abstracts away the training loop while providing callbacks, constraints, initializers, regularizers, and more. You also have access to the standard evaluation and prediction functions. Torchsample provides a wide range of callbacks, generally mimicking the interface found in Keras.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    dtreeviz

    dtreeviz

    Python library for decision tree visualization & model interpretation

    A python library for decision tree visualization and model interpretation. Decision trees are the fundamental building block of gradient boosting machines and Random Forests(tm), probably the two most popular machine learning models for structured data. Visualizing decision trees is a tremendous aid when learning how these models work and when interpreting models. The visualizations are inspired by an educational animation by R2D3; A visual introduction to machine learning. Please see How to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    DoWhy

    DoWhy

    DoWhy is a Python library for causal inference

    DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions. DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks. Much like machine learning libraries have done for prediction, DoWhy is a Python library that aims to spark causal thinking and analysis. DoWhy provides a wide variety of algorithms for effect estimation, causal structure learning, diagnosis of causal...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Featuretools

    Featuretools

    An open source python library for automated feature engineering

    ... can specify prediction times row-by-row. Featuretools come with a library of low-level functions that can be stacked to create features. You can build and share your own custom primitives to be reused on any dataset. Featuretools works alongside tools you already use to build machine learning pipelines. You can load in pandas' data frames and automatically create meaningful features in a fraction of the time it would take to do so manually.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    AutoMLPipeline.jl

    AutoMLPipeline.jl

    Package that makes it trivial to create and evaluate machine learning

    AutoMLPipeline (AMLP) is a package that makes it trivial to create complex ML pipeline structures using simple expressions. It leverages on the built-in macro programming features of Julia to symbolically process, and manipulate pipeline expressions and makes it easy to discover optimal structures for machine learning regression and classification. To illustrate, here is a pipeline expression and evaluation of a typical machine learning workflow that extracts numerical features (numf) for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Visual Studio Code client for Tabnine

    Visual Studio Code client for Tabnine

    Visual Studio Code client for Tabnine

    ...-assisted code completion, AI-powered code completion, AI copilot, AI code snippets, code suggestion, code prediction, code hinting, content assist, unit test generation or documentation generation, using Tabnine can massively impact your coding velocity, significantly cutting down your coding time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    NannyML

    NannyML

    Detecting silent model failure. NannyML estimates performance

    ... science, empowering data scientist to quickly understand and automatically detect silent model failure. By using NannyML, data scientists can finally maintain complete visibility and trust in their deployed machine learning models. When the actual outcome of your deployed prediction models is delayed, or even when post-deployment target labels are completely absent, you can use NannyML's CBPE-algorithm to estimate model performance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    talos

    talos

    Hyperparameter Optimization for TensorFlow, Keras and PyTorch

    ... solutions that add complexity instead of reducing it. Within minutes, without learning any new syntax, Talos allows you to configure, perform, and evaluate hyperparameter optimization experiments that yield state-of-the-art results across a wide range of prediction tasks. Talos provides the simplest and yet most powerful available method for hyperparameter optimization with TensorFlow (tf.keras) and PyTorch.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Compose

    Compose

    A machine learning tool for automated prediction engineering

    Compose is a machine learning tool for automated prediction engineering. It allows you to structure prediction problems and generate labels for supervised learning. An end user defines an outcome of interest by writing a labeling function, then runs a search to automatically extract training examples from historical data. Its result is then provided to Featuretools for automated feature engineering and subsequently to EvalML for automated machine learning. Prediction problems are structured...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    UnionML

    UnionML

    Build and deploy machine learning microservices

    ... learning methods, implement endpoints for fetching data, training models, serving predictions (and much more) to write a complete ML stack in one place. Data science, ML engineering, and MLOps practitioners can all gather around UnionML apps as a way of defining a single source of truth about your ML system’s behavior. This helps you maintain consistent code across your ML stack, from training to prediction logic.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    DeepCTR

    DeepCTR

    Package of deep-learning based CTR models

    ... techniques have been widely used in CTR prediction task. The data in CTR estimation task usually includes high sparse,high cardinality categorical features and some dense numerical features. Since DNN are good at handling dense numerical features,we usually map the sparse categorical features to dense numerical through embedding technique.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    DeepCTR-Torch

    DeepCTR-Torch

    Easy-to-use,Modular and Extendible package of deep-learning models

    DeepCTR-Torch is an easy-to-use, Modular and Extendible package of deep-learning-based CTR models along with lots of core components layers that can be used to build your own custom model easily.It is compatible with PyTorch.You can use any complex model with model.fit() and model.predict(). With the great success of deep learning, DNN-based techniques have been widely used in CTR estimation tasks. The data in the CTR estimation task usually includes high sparse,high cardinality categorical...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    Emb-GAM

    Emb-GAM

    An interpretable and efficient predictor using pre-trained models

    Deep learning models have achieved impressive prediction performance but often sacrifice interpretability, a critical consideration in high-stakes domains such as healthcare or policymaking. In contrast, generalized additive models (GAMs) can maintain interpretability but often suffer from poor prediction performance due to their inability to effectively capture feature interactions. In this work, we aim to bridge this gap by using pre-trained neural language models to extract embeddings...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    DeepSeek-V3

    DeepSeek-V3

    Powerful AI language model (MoE) optimized for efficiency/performance

    DeepSeek-V3 is a robust Mixture-of-Experts (MoE) language model developed by DeepSeek, featuring a total of 671 billion parameters, with 37 billion activated per token. It employs Multi-head Latent Attention (MLA) and the DeepSeekMoE architecture to enhance computational efficiency. The model introduces an auxiliary-loss-free load balancing strategy and a multi-token prediction training objective to boost performance. Trained on 14.8 trillion diverse, high-quality tokens, DeepSeek-V3 underwent...
    Downloads: 30 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • Next