DGRLVQ
Dynamic Generalized Relevance Learning Vector Quantization
... categories in between, then the other points act as a barrier and the prototype will not find its optimum position during training. Since the model complexity is not known in many cases, we avoid this problem by introducing a "Dynamic" version of LVQ.
Dynamic-GRLVQ (DGRLVQ), which adapts the model complexity to the given problem during training by adding or removing prototypes dynamically/realtime one by one for each category until satisfactory classification results are achieved.