Showing 478 open source projects for "python games code"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Deliver secure remote access with OpenVPN. Icon
    Deliver secure remote access with OpenVPN.

    Trusted by nearly 20,000 customers worldwide, and all major cloud providers.

    OpenVPN's products provide scalable, secure remote access — giving complete freedom to your employees to work outside the office while securely accessing SaaS, the internet, and company resources.
    Get started — no credit card required.
  • 1
    scikit-image

    scikit-image

    Image processing in Python

    scikit-image is a collection of algorithms for image processing. It is available free of charge and free of restriction. We pride ourselves on high-quality, peer-reviewed code, written by an active community of volunteers. scikit-image builds on scipy.ndimage to provide a versatile set of image processing routines in Python. This library is developed by its community, and contributions are most welcome! Read about our mission, vision, and values and how we govern the project. Major proposals...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    fastai

    fastai

    Deep learning library

    ... of many deep learning and data processing techniques in terms of decoupled abstractions. These abstractions can be expressed concisely and clearly by leveraging the dynamism of the underlying Python language and the flexibility of the PyTorch library. fastai is organized around two main design goals: to be approachable and rapidly productive, while also being deeply hackable and configurable. It is built on top of a hierarchy of lower-level APIs which provide composable building blocks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    UpTrain

    UpTrain

    Your open-source LLM evaluation toolkit

    ... and optimal prompt selection. Hallucinations have plagued LLMs since their inception. By quantifying degree of hallucination and quality of retrieved context, UpTrain helps to detect responses with low factual accuracy and prevent them before serving to the end-users. Unleash unparalleled power with a single line of code and tailor every detail as per as your use-case.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    LLM Foundry

    LLM Foundry

    LLM training code for MosaicML foundation models

    Introducing MPT-7B, the first entry in our MosaicML Foundation Series. MPT-7B is a transformer trained from scratch on 1T tokens of text and code. It is open source, available for commercial use, and matches the quality of LLaMA-7B. MPT-7B was trained on the MosaicML platform in 9.5 days with zero human intervention at a cost of ~$200k. Large language models (LLMs) are changing the world, but for those outside well-resourced industry labs, it can be extremely difficult to train and deploy...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 5
    Label Sleuth

    Label Sleuth

    Open source no-code system for text annotation and building of text

    An open-source no-code system for text annotation and building text classifiers. No AI knowledge needed. From task definition to working model in just a few hours! While domain experts label their data, Label Sleuth automatically trains in the background-appropriate machine learning models. To avoid wasted labeling effort, Label Sleuth employs active learning techniques to guide the user in what they should be labeled next. Domain experts can quickly start labeling their data through...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Opacus

    Opacus

    Training PyTorch models with differential privacy

    Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment. Vectorized per-sample gradient computation that is 10x faster than micro batching. Supports most types of PyTorch models and can be used with minimal modification to the original neural network. Open source...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    SSD in PyTorch 1.0

    SSD in PyTorch 1.0

    High quality, fast, modular reference implementation of SSD in PyTorch

    This repository implements SSD (Single Shot MultiBox Detector). The implementation is heavily influenced by the projects ssd.pytorch, pytorch-ssd and maskrcnn-benchmark. This repository aims to be the code base for research based on SSD. Multi-GPU training and inference: We use DistributedDataParallel, you can train or test with arbitrary GPU(s), the training schema will change accordingly. Add your own modules without pain. We abstract backbone, Detector, BoxHead, BoxPredictor, etc. You can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    PettingZoo

    PettingZoo

    An API standard for multi-agent reinforcement learning environments

    PettingZoo is a standardized API and library for multi-agent reinforcement learning (MARL) environments. It provides a broad set of environments and tools to facilitate the development and evaluation of multi-agent algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Audiogen Codec

    Audiogen Codec

    48khz stereo neural audio codec for general audio

    AGC (Audiogen Codec) is a convolutional autoencoder based on the DAC architecture, which holds SOTA. We found that training with EMA and adding a perceptual loss term with CLAP features improved performance. These codecs, being low compression, outperform Meta's EnCodec and DAC on general audio as validated from internal blind ELO games. We trained (relatively) very low compression codecs in the pursuit of solving a core issue regarding general music and audio generation, low acoustic quality...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    Taipy

    Taipy

    Turns Data and AI algorithms into production-ready web applications

    .... Struggle with sluggish performance and excessive memory usage, as every data point demands processing. Large datasets become cumbersome, complicating the user experience and data analysis. Scenarios are made easy with Taipy Studio. A powerful VS Code extension that unlocks a convenient graphical editor. Get your methods invoked at a certain time or intervals. Enjoy a variety of predefined themes or build your own.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    segment-geospatial

    segment-geospatial

    A Python package for segmenting geospatial data with the SAM

    The segment-geospatial package draws its inspiration from segment-anything-eo repository authored by Aliaksandr Hancharenka. To facilitate the use of the Segment Anything Model (SAM) for geospatial data, I have developed the segment-anything-py and segment-geospatial Python packages, which are now available on PyPI and conda-forge. My primary objective is to simplify the process of leveraging SAM for geospatial data analysis by enabling users to achieve this with minimal coding effort. I have...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    EvaDB

    EvaDB

    Database system for building simpler and faster AI-powered application

    Over the last decade, AI models have radically changed the world of natural language processing and computer vision. They are accurate on various tasks ranging from question answering to object tracking in videos. To use an AI model, the user needs to program against multiple low-level libraries, like PyTorch, Hugging Face, Open AI, etc. This tedious process often leads to a complex AI app that glues together these libraries to accomplish the given task. This programming complexity prevents...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Norfair

    Norfair

    Lightweight Python library for adding real-time multi-object tracking

    Norfair is a customizable lightweight Python library for real-time multi-object tracking. Using Norfair, you can add tracking capabilities to any detector with just a few lines of code. Any detector expressing its detections as a series of (x, y) coordinates can be used with Norfair. This includes detectors performing tasks such as object or keypoint detection. It can easily be inserted into complex video processing pipelines to add tracking to existing projects. At the same time...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    ktrain

    ktrain

    ktrain is a Python library that makes deep learning AI more accessible

    ktrain is a Python library that makes deep learning and AI more accessible and easier to apply. ktrain is a lightweight wrapper for the deep learning library TensorFlow Keras (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like fastai and ludwig, ktrain is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners. With only a few lines...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators. The whole framework and meta-operators are compiled just in time. A powerful op compiler and tuner are integrated into Jittor. It allowed us to generate high-performance code specialized for your model. Jittor also contains a wealth of high-performance model libraries, including image recognition, detection, segmentation, generation, differentiable rendering, geometric learning, reinforcement...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    TaskWeaver

    TaskWeaver

    A code-first agent framework for seamlessly planning analytics tasks

    TaskWeaver is a multi-agent AI framework designed for orchestrating autonomous agents that collaborate to complete complex tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    FullTClash

    FullTClash

    General proxy performance testing tool based on Clash using Telegram

    Back end part useClash project(It can also be called nowmihomo)The relevant code is used as the outing agent. The front end part uses Telegram API as the interactive interface, which needs to be used in conjunction with Telegram, that is, a Telegram robot (bot), FullTClash bot is a Telegram robot (hereinafter referred to as bot) carrying its test tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    MiniSom

    MiniSom

    MiniSom is a minimalistic implementation of the Self Organizing Maps

    ... of the Self-Organizing Map (SOM) algorithm, focusing on simplicity in features, dependencies, and code style. Although it has expanded in terms of features, it remains minimalistic by relying only on the numpy library and emphasizing vectorization in coding style.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Nixtla ML

    Nixtla ML

    TimeGPT-1: production ready pre-trained Time Series Foundation Model

    TimeGPT is a production ready, generative pretrained transformer for time series. It's capable of accurately predicting various domains such as retail, electricity, finance, and IoT with just a few lines of code. Whether you're a bank forecasting market trends or a startup predicting product demand, TimeGPT democratizes access to cutting-edge predictive insights, eliminating the need for a dedicated team of machine learning engineers. A generative model for time series. TimeGPT is capable...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Curated Transformers

    Curated Transformers

    PyTorch library of curated Transformer models and their components

    State-of-the-art transformers, brick by brick. Curated Transformers is a transformer library for PyTorch. It provides state-of-the-art models that are composed of a set of reusable components. Supports state-of-the-art transformer models, including LLMs such as Falcon, Llama, and Dolly v2. Implementing a feature or bugfix benefits all models. For example, all models support 4/8-bit inference through the bitsandbytes library and each model can use the PyTorch meta device to avoid unnecessary...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    imodelsX

    imodelsX

    Interpretable prompting and models for NLP

    Interpretable prompting and models for NLP (using large language models). Generates a prompt that explains patterns in data (Official) Explain the difference between two distributions. Find a natural-language prompt using input-gradients. Fit a better linear model using an LLM to extract embeddings. Fit better decision trees using an LLM to expand features. Finetune a single linear layer on top of LLM embeddings. Use these just a like a sci-kit-learn model. During training, they fit better...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Denoising Diffusion Probabilistic Model

    Denoising Diffusion Probabilistic Model

    Implementation of Denoising Diffusion Probabilistic Model in Pytorch

    Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to generative modeling that may have the potential to rival GANs. It uses denoising score matching to estimate the gradient of the data distribution, followed by Langevin sampling to sample from the true distribution. If you simply want to pass in a folder name and the desired image dimensions, you can use the Trainer class to easily train a model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Sonnet

    Sonnet

    TensorFlow-based neural network library

    ... ship with Sonnet, making it quite powerful and yet simple at the same time. Users are also encouraged to build their own modules. Sonnet is designed to be extremely unopinionated about your use of modules. It is simple to understand, and offers clear and focused code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    AI4U

    AI4U

    Multi-engine plugin to specify agents with reinforcement learning

    AI4U is a multi-engine plugin (Godot and Unity) that allows you to design Non-Player Characters (NPCs) of games using an agent abstraction. In addition, AI4U has a low-level API that allows you to connect the agent to any algorithm made available in Python by the reinforcement learning community specifically and by the Artificial Intelligence community in general. Reinforcement learning promises to overcome traditional navigation mesh mechanisms in games and to provide more autonomous...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Ludwig AI

    Ludwig AI

    Low-code framework for building custom LLMs, neural networks

    Declarative deep learning framework built for scale and efficiency. Ludwig is a low-code framework for building custom AI models like LLMs and other deep neural networks. Declarative YAML configuration file is all you need to train a state-of-the-art LLM on your data. Support for multi-task and multi-modality learning. Comprehensive config validation detects invalid parameter combinations and prevents runtime failures. Automatic batch size selection, distributed training (DDP, DeepSpeed...
    Downloads: 0 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.