Showing 207 open source projects for "python neural"

View related business solutions
  • Turn Your Content into Interactive Magic - For Free Icon
    Turn Your Content into Interactive Magic - For Free

    From Canva to Slides, Desmos to YouTube, Lumio works with the tech tools you are already using.

    Transform anything you share into an engaging digital experience - for free. Instantly convert your PDFs, slides, and files into dynamic, interactive sessions with built-in collaboration tools, activities, and real-time assessment. From teaching to training to team building, make every presentation unforgettable. Used by millions for education, business, and professional development.
    Start Free Forever
  • Sales CRM and Pipeline Management Software | Pipedrive Icon
    Sales CRM and Pipeline Management Software | Pipedrive

    The easy and effective CRM for closing deals

    Pipedrive’s simple interface empowers salespeople to streamline workflows and unite sales tasks in one workspace. Unlock instant sales insights with Pipedrive’s visual sales pipeline and fine-tune your strategy with robust reporting features and a personalized AI Sales Assistant.
    Try it for free
  • 1
    Optax

    Optax

    Optax is a gradient processing and optimization library for JAX

    Optax is a gradient processing and optimization library for JAX. It is designed to facilitate research by providing building blocks that can be recombined in custom ways in order to optimize parametric models such as, but not limited to, deep neural networks. We favor focusing on small composable building blocks that can be effectively combined into custom solutions. Others may build upon these basic components in more complicated abstractions. Whenever reasonable, implementations prioritize...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    fastai

    fastai

    Deep learning library

    ... of many deep learning and data processing techniques in terms of decoupled abstractions. These abstractions can be expressed concisely and clearly by leveraging the dynamism of the underlying Python language and the flexibility of the PyTorch library. fastai is organized around two main design goals: to be approachable and rapidly productive, while also being deeply hackable and configurable. It is built on top of a hierarchy of lower-level APIs which provide composable building blocks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Katib

    Katib

    Automated Machine Learning on Kubernetes

    Katib is a Kubernetes-native project for automated machine learning (AutoML). Katib supports Hyperparameter Tuning, Early Stopping and Neural Architecture Search. Katib is a project that is agnostic to machine learning (ML) frameworks. It can tune hyperparameters of applications written in any language of the users’ choice and natively supports many ML frameworks, such as TensorFlow, Apache MXNet, PyTorch, XGBoost, and others. Katib can perform training jobs using any Kubernetes Custom...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Kaleidoscope-SDK

    Kaleidoscope-SDK

    User toolkit for analyzing and interfacing with Large Language Models

    kaleidoscope-sdk is a Python module used to interact with large language models hosted via the Kaleidoscope service available at: https://github.com/VectorInstitute/kaleidoscope. It provides a simple interface to launch LLMs on an HPC cluster, asking them to perform basic features like text generation, but also retrieve intermediate information from inside the model, such as log probabilities and activations. Users must authenticate using their Vector Institute cluster credentials. This can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Powering the best of the internet | Fastly Icon
    Powering the best of the internet | Fastly

    Fastly's edge cloud platform delivers faster, safer, and more scalable sites and apps to customers.

    Ensure your websites, applications and services can effortlessly handle the demands of your users with Fastly. Fastly’s portfolio is designed to be highly performant, personalized and secure while seamlessly scaling to support your growth.
    Try for free
  • 5
    FLAML

    FLAML

    A fast library for AutoML and tuning

    FLAML is a lightweight Python library that finds accurate machine learning models automatically, efficiently and economically. It frees users from selecting learners and hyperparameters for each learner. For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources. It supports both classical machine learning models and deep neural networks. It is easy to customize or extend. Users can find...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    towhee

    towhee

    Framework that is dedicated to making neural data processing

    Towhee is an open-source machine-learning pipeline that helps you encode your unstructured data into embeddings. You can use our Python API to build a prototype of your pipeline and use Towhee to automatically optimize it for production-ready environments. From images to text to 3D molecular structures, Towhee supports data transformation for nearly 20 different unstructured data modalities. We provide end-to-end pipeline optimizations, covering everything from data decoding/encoding, to model...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    PyTorch Geometric

    PyTorch Geometric

    Geometric deep learning extension library for PyTorch

    ... of functionality of PyTorch Geometric to other packages, which needs to be additionally installed. These packages come with their own CPU and GPU kernel implementations based on C++/CUDA extensions. We do not recommend installation as root user on your system python. Please setup an Anaconda/Miniconda environment or create a Docker image. We provide pip wheels for all major OS/PyTorch/CUDA combinations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    UForm

    UForm

    Multi-Modal Neural Networks for Semantic Search, based on Mid-Fusion

    UForm is a Multi-Modal Modal Inference package, designed to encode Multi-Lingual Texts, Images, and, soon, Audio, Video, and Documents, into a shared vector space! It comes with a set of homonymous pre-trained networks available on HuggingFace portal and extends the transfromers package to support Mid-fusion Models. Late-fusion models encode each modality independently, but into one shared vector space. Due to independent encoding late-fusion models are good at capturing coarse-grained...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    hloc

    hloc

    Visual localization made easy with hloc

    This is hloc, a modular toolbox for state-of-the-art 6-DoF visual localization. It implements Hierarchical Localization, leveraging image retrieval and feature matching, and is fast, accurate, and scalable. This codebase won the indoor/outdoor localization challenges at CVPR 2020 and ECCV 2020, in combination with SuperGlue, our graph neural network for feature matching. We provide step-by-step guides to localize with Aachen, InLoc, and to generate reference poses for your own data using SfM...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    Prime QA

    Prime QA

    State-of-the-art Multilingual Question Answering research

    PrimeQA is a public open source repository that enables researchers and developers to train state-of-the-art models for question answering (QA). By using PrimeQA, a researcher can replicate the experiments outlined in a paper published in the latest NLP conference while also enjoying the capability to download pre-trained models (from an online repository) and run them on their own custom data. PrimeQA is built on top of the Transformers toolkit and uses datasets and models that are directly...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Spektral

    Spektral

    Graph Neural Networks with Keras and Tensorflow 2

    Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to provide a simple but flexible framework for creating graph neural networks (GNNs). You can use Spektral for classifying the users of a social network, predicting molecular properties, generating new graphs with GANs, clustering nodes, predicting links, and any other task where data is described by graphs. Spektral implements some of the most popular layers for graph...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    VALL-E

    VALL-E

    PyTorch implementation of VALL-E (Zero-Shot Text-To-Speech)

    We introduce a language modeling approach for text to speech synthesis (TTS). Specifically, we train a neural codec language model (called VALL-E) using discrete codes derived from an off-the-shelf neural audio codec model, and regard TTS as a conditional language modeling task rather than continuous signal regression as in previous work. During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems. VALL...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 13
    AnnLite

    AnnLite

    A fast embedded library for approximate nearest neighbor search

    ... within a subset of the dataset. Smooth integration with neural search ecosystem including Jina and DocArray, so that users can easily expose search API with gRPC and/or HTTP. The library is easy to install and use. It is designed to be used with Python. To support search with filters, the annlite must be created with colums parameter, which is a series of fields you want to filter by.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    T81 558

    T81 558

    Applications of Deep Neural Networks

    Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks that can handle tabular data, images, text, and audio as both input and output. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to classic neural network...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    NOW

    NOW

    No-code tool for creating a neural search solution in minutes

    One line to host them all. Bootstrap your multimodal search case in minutes. NOW gives the world access to multimodal neural search with just one command. NOW supports various formats for uploading your dataset to your search application. You may either choose a demo dataset hosted by NOW, or use your own custom dataset, to build an application. NOW can support your custom data in the form of a DocumentArray, as a path to a local folder, or S3 bucket. You can choose a demo dataset to get...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    DIG

    DIG

    A library for graph deep learning research

    The key difference with current graph deep learning libraries, such as PyTorch Geometric (PyG) and Deep Graph Library (DGL), is that, while PyG and DGL support basic graph deep learning operations, DIG provides a unified testbed for higher level, research-oriented graph deep learning tasks, such as graph generation, self-supervised learning, explainability, 3D graphs, and graph out-of-distribution. If you are working or plan to work on research in graph deep learning, DIG enables you to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Alpa

    Alpa

    Training and serving large-scale neural networks

    Alpa is a system for training and serving large-scale neural networks. Scaling neural networks to hundreds of billions of parameters has enabled dramatic breakthroughs such as GPT-3, but training and serving these large-scale neural networks require complicated distributed system techniques. Alpa aims to automate large-scale distributed training and serving with just a few lines of code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Sockeye

    Sockeye

    Sequence-to-sequence framework, focused on Neural Machine Translation

    Sockeye is an open-source sequence-to-sequence framework for Neural Machine Translation built on PyTorch. It implements distributed training and optimized inference for state-of-the-art models, powering Amazon Translate and other MT applications. For a quickstart guide to training a standard NMT model on any size of data, see the WMT 2014 English-German tutorial. If you are interested in collaborating or have any questions, please submit a pull request or issue. You can also send questions...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    ManimML

    ManimML

    ManimML is a project focused on providing animations

    ManimML is a project focused on providing animations and visualizations of common machine-learning concepts with the Manim Community Library. Please check out our paper. We want this project to be a compilation of primitive visualizations that can be easily combined to create videos about complex machine-learning concepts. Additionally, we want to provide a set of abstractions that allow users to focus on explanations instead of software engineering.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    AlphaZero.jl

    AlphaZero.jl

    A generic, simple and fast implementation of Deepmind's AlphaZero

    ...++) and optimized for highly distributed computing environments. This makes them hardly accessible for students, researchers and hackers. Many simple Python implementations can be found on Github, but none of them is able to beat a reasonable baseline on games such as Othello or Connect Four. As an illustration, the benchmark in the README of the most popular of them only features a random baseline, along with a greedy baseline that does not appear to be significantly stronger.
    Downloads: 42 This Week
    Last Update:
    See Project
  • 21
    Conscious Artificial Intelligence

    Conscious Artificial Intelligence

    It's possible for machines to become self-aware.

    This project is a quest for conscious artificial intelligence. A number of prototypes will be developed as the project progresses. This project has 2 subprojects: Object Pascal based CAI NEURAL API - https://github.com/joaopauloschuler/neural-api Python based K-CAI NEURAL API - https://github.com/joaopauloschuler/k-neural-api A video from the first prototype has been made: http://www.youtube.com/watch?v=qH-IQgYy9zg Above video shows a popperian agent collecting mining ore from 3...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    GNNePCSAFT

    GNNePCSAFT

    Smart Thermodynamic Modeling with Graph Neural Networks

    Embark on a cutting-edge journey with our project that harnesses the power of Graph Neural Networks to estimate pure-component parameters of the state-of-the-art Equation of State, ePC-SAFT. We aim to empower users to leverage this robust equation without the need for prior experimental data, revolutionizing the calculation of thermodynamic properties and enhancing process simulations. FeOS is used for the PC-SAFT calculations. The estimated parameters can be used in DWSIM and Aspen HYSYS...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    DeepCTR

    DeepCTR

    Package of deep-learning based CTR models

    DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can be used to easily build custom models. You can use any complex model with model.fit(), and model.predict(). Provide tf.keras.Model like interface for quick experiment. Provide tensorflow estimator interface for large scale data and distributed training. It is compatible with both tf 1.x and tf 2.x. With the great success of deep learning,DNN-based...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25

    NAM-Runner

    Batch file to install and run NAM (neural-amp-modeler) easily.

    A Windows 10 batch file, that installs and runs the NAM model trainer (neural-amp-modeler) by Steven Atkinson right into the GUI application. Fully automated. Custom one-time installation of everything you need to train neural network models of guitar amps and more for the NAM VST plugin, no Conda required. Runs as a launcher afterwards. Portable installation. New pyTorch inclues CUDA runtime for fast Nvidia GPU support. No command line, python or conda knowledge needed! Just double click.
    Downloads: 1 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.