Showing 634 open source projects for "python code editor"

View related business solutions
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • Run applications fast and securely in a fully managed environment Icon
    Run applications fast and securely in a fully managed environment

    Cloud Run is a fully-managed compute platform that lets you run your code in a container directly on top of scalable infrastructure.

    Run frontend and backend services, batch jobs, deploy websites and applications, and queue processing workloads without the need to manage infrastructure.
    Try for free
  • 1
    Vidi2

    Vidi2

    Large Multimodal Models for Video Understanding and Editing

    Vidi is a family of large multimodal models developed for deep video understanding and editing tasks, integrating vision, audio, and language to allow sophisticated querying and manipulation of video content. It’s designed to process long-form, real-world videos and answer complex queries such as “when in this clip does X happen?” or “where in the frame is object Y during that moment?” — offering temporal retrieval, spatio-temporal grounding (i.e. locating objects over time + space), and...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    AWS Neuron

    AWS Neuron

    Powering Amazon custom machine learning chips

    AWS Neuron is a software development kit (SDK) for running machine learning inference using AWS Inferentia chips. It consists of a compiler, run-time, and profiling tools that enable developers to run high-performance and low latency inference using AWS Inferentia-based Amazon EC2 Inf1 instances. Using Neuron developers can easily train their machine learning models on any popular framework such as TensorFlow, PyTorch, and MXNet, and run it optimally on Amazon EC2 Inf1 instances. You can...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    handson-ml3

    handson-ml3

    Fundamentals of Machine Learning and Deep Learning

    handson-ml3 contains the Jupyter notebooks and code for the third edition of the book Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow. It guides readers through modern machine learning and deep learning workflows using Python, with examples spanning data preparation, supervised and unsupervised learning, deep neural networks, RL, and production-ready model deployment.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    OSS-Fuzz Gen

    OSS-Fuzz Gen

    LLM powered fuzzing via OSS-Fuzz

    OSS-Fuzz-Gen is a companion project that helps automatically create or improve fuzz targets for open-source codebases, aiming to increase coverage in OSS-Fuzz with minimal maintainer effort. It analyses a library’s APIs, examples, and tests to propose harnesses that exercise parsers, decoders, or protocol handlers—precisely the code where fuzzing pays off. The system integrates with modern LLM-assisted workflows to draft harness code and then iterates based on build errors or low coverage...
    Downloads: 0 This Week
    Last Update:
    See Project
  • CYPHER Learning is a world-class, award-winning learning management system (LMS) Icon
    CYPHER Learning is a world-class, award-winning learning management system (LMS)

    Best learning platform for Schools and Universities

    Institutions throughout the world use CYPHER Learning as their tool of choice to manage all classroom activities. CYPHER Learning is used by organizations ranging from large universities such as STI in the Philippines, school districts such as Santa Barbara Unified School District, to small schools with 20 students in Spain.
    Learn More
  • 5
    Qwen3 Embedding

    Qwen3 Embedding

    Designed for text embedding and ranking tasks

    Qwen3-Embedding is a model series from the Qwen family designed specifically for text embedding and ranking tasks. It builds upon the Qwen3 base/dense models and offers several sizes (0.6B, 4B, 8B parameters), for both embedding and reranking, with high multilingual capability, long‐context understanding, and reasoning. It achieves state-of-the-art performance on benchmarks like MTEB (Multilingual Text Embedding Benchmark) and supports instruction-aware embedding (i.e. embedding task...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Norfair

    Norfair

    Lightweight Python library for adding real-time multi-object tracking

    Norfair is a customizable lightweight Python library for real-time multi-object tracking. Using Norfair, you can add tracking capabilities to any detector with just a few lines of code. Any detector expressing its detections as a series of (x, y) coordinates can be used with Norfair. This includes detectors performing tasks such as object or keypoint detection. It can easily be inserted into complex video processing pipelines to add tracking to existing projects.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    ...The whole framework and meta-operators are compiled just in time. A powerful op compiler and tuner are integrated into Jittor. It allowed us to generate high-performance code specialized for your model. Jittor also contains a wealth of high-performance model libraries, including image recognition, detection, segmentation, generation, differentiable rendering, geometric learning, reinforcement learning, etc. The front-end language is Python. Module Design and Dynamic Graph Execution is used in the front-end, which is the most popular design for deep learning framework interface. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Transformer Engine

    Transformer Engine

    A library for accelerating Transformer models on NVIDIA GPUs

    Transformer Engine (TE) is a library for accelerating Transformer models on NVIDIA GPUs, including using 8-bit floating point (FP8) precision on Hopper GPUs, to provide better performance with lower memory utilization in both training and inference. TE provides a collection of highly optimized building blocks for popular Transformer architectures and an automatic mixed precision-like API that can be used seamlessly with your framework-specific code. TE also includes a framework-agnostic C++...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    OpenFold

    OpenFold

    Trainable, memory-efficient, and GPU-friendly PyTorch reproduction

    OpenFold carefully reproduces (almost) all of the features of the original open source inference code (v2.0.1). The sole exception is model ensembling, which fared poorly in DeepMind's own ablation testing and is being phased out in future DeepMind experiments. It is omitted here for the sake of reducing clutter. In cases where the Nature paper differs from the source, we always defer to the latter. OpenFold is trainable in full precision, half precision, or bfloat16 with or without...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Transforming NetOps Through No-Code Network Automation - NetBrain Icon
    Transforming NetOps Through No-Code Network Automation - NetBrain

    For anyone searching for a complete no-code automation platform for hybrid network observability and AIOps

    NetBrain, founded in 2004, provides a powerful no-code automation platform for hybrid network observability, allowing organizations to enhance their operational efficiency through automated workflows. The platform applies automation across three key workflows: troubleshooting, change management, and assessment.
    Learn More
  • 10
    PPTAgent

    PPTAgent

    PPTAgent: Generating and Evaluating Presentations

    PPTAgent is a research system for generating and evaluating slide decks that goes beyond simple text-to-slides. It follows a two-stage, edit-based workflow: first it analyzes reference presentations to infer slide roles and structure, then it drafts an outline and iteratively performs editing actions to produce new slides. The project includes both the generation agent and an evaluation framework, PPTEval, to score content quality, design, and coherence. The repository highlights the EMNLP...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    MobileCLIP

    MobileCLIP

    Implementation of "MobileCLIP" CVPR 2024

    MobileCLIP is a family of efficient image-text embedding models designed for real-time, on-device retrieval and zero-shot classification. The repo provides training, inference, and evaluation code for MobileCLIP models trained on DataCompDR, and for newer MobileCLIP2 models trained on DFNDR. It includes an iOS demo app and Core ML artifacts to showcase practical, offline photo search and classification on iPhone-class hardware. Project notes highlight latency/accuracy trade-offs, with...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Semantic Router

    Semantic Router

    Superfast AI decision making and processing of multi-modal data

    Semantic Router is a superfast decision-making layer for your LLMs and agents. Rather than waiting for slow, unreliable LLM generations to make tool-use or safety decisions, we use the magic of semantic vector space — routing our requests using semantic meaning. Combining LLMs with deterministic rules means we can be confident that our AI systems behave as intended. Cramming agent tools into the limited context window is expensive, slow, and fundamentally limited. Semantic Router enables...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    lightning AI

    lightning AI

    The most intuitive, flexible, way for researchers to build models

    Build in days not months with the most intuitive, flexible framework for building models and Lightning Apps (ie: ML workflow templates) which "glue" together your favorite ML lifecycle tools. Build models and build/publish end-to-end ML workflows that "glue" your favorite tools together. Models are “easy”, the “glue” work is hard. Lightning Apps are community-built templates that stitch together your favorite ML lifecycle tools into cohesive ML workflows that can run on your laptop or any...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    Fish Speech

    Fish Speech

    SOTA Open Source TTS

    Fish Speech is a state-of-the-art open-source text-to-speech project that has evolved into the OpenAudio series of advanced TTS models. The repository hosts the code and tooling for training, fine-tuning, and serving high-quality TTS, while the current flagship models (OpenAudio-S1 and S1-mini) are distributed via Fish Audio’s playground and Hugging Face. The models are evaluated with Seed TTS metrics and achieve exceptionally low word and character error rates, indicating strong...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 15
    Datasets

    Datasets

    Hub of ready-to-use datasets for ML models

    Datasets is a library for easily accessing and sharing datasets, and evaluation metrics for Natural Language Processing (NLP), computer vision, and audio tasks. Load a dataset in a single line of code, and use our powerful data processing methods to quickly get your dataset ready for training in a deep learning model. Backed by the Apache Arrow format, process large datasets with zero-copy reads without any memory constraints for optimal speed and efficiency. We also feature a deep...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 16
    The Operator Splitting QP Solver

    The Operator Splitting QP Solver

    The Operator Splitting QP Solver

    ...The algorithm is absolutely division-free after the setup and it requires no assumptions on problem data (the problem only needs to be convex). It just works. OSQP has an easy interface to generate customized embeddable C code with no memory manager required. OSQP supports many interfaces including C/C++, Fortran, Matlab, Python, R, Julia, Rust.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    Qwen2-Audio

    Qwen2-Audio

    Repo of Qwen2-Audio chat & pretrained large audio language model

    Qwen2-Audio is a large audio-language model by Alibaba Cloud, part of the Qwen series. It is trained to accept various audio signal inputs (including speech, sounds, etc.) and perform both voice chat and audio analysis, producing textual responses. It supports two major modes: Voice Chat (interactive voice only input) and Audio Analysis (audio + text instructions), with both base and instruction-tuned models. It is evaluated on many benchmarks (speech recognition, translation, sound...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Django friendly finite state machine

    Django friendly finite state machine

    Django friendly finite state machine support

    Django-fsm adds simple declarative state management for Django models. If you need parallel task execution, view, and background task code reuse over different flows - check my new project Django-view flow. Instead of adding a state field to a Django model and managing its values by hand, you use FSMField and mark model methods with the transition decorator. These methods could contain side effects of the state change. You may also take a look at the Django-fsm-admin project containing a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Torch-TensorRT

    Torch-TensorRT

    PyTorch/TorchScript/FX compiler for NVIDIA GPUs using TensorRT

    Torch-TensorRT is a compiler for PyTorch/TorchScript, targeting NVIDIA GPUs via NVIDIA’s TensorRT Deep Learning Optimizer and Runtime. Unlike PyTorch’s Just-In-Time (JIT) compiler, Torch-TensorRT is an Ahead-of-Time (AOT) compiler, meaning that before you deploy your TorchScript code, you go through an explicit compile step to convert a standard TorchScript program into a module targeting a TensorRT engine. Torch-TensorRT operates as a PyTorch extension and compiles modules that integrate...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 20
    Gemma in PyTorch

    Gemma in PyTorch

    The official PyTorch implementation of Google's Gemma models

    gemma_pytorch provides the official PyTorch reference for running and fine-tuning Google’s Gemma family of open models. It includes model definitions, configuration files, and loading utilities for multiple parameter scales, enabling quick evaluation and downstream adaptation. The repository demonstrates text generation pipelines, tokenizer setup, quantization paths, and adapters for low-rank or parameter-efficient fine-tuning. Example notebooks walk through instruction tuning and evaluation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    OpenLIT

    OpenLIT

    OpenLIT is an open-source LLM Observability tool

    OpenLIT is an OpenTelemetry-native tool designed to help developers gain insights into the performance of their LLM applications in production. It automatically collects LLM input and output metadata and monitors GPU performance for self-hosted LLMs. OpenLIT makes integrating observability into GenAI projects effortless with just a single line of code. Whether you're working with popular LLM providers such as OpenAI and HuggingFace, or leveraging vector databases like ChromaDB, OpenLIT...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Curated Transformers

    Curated Transformers

    PyTorch library of curated Transformer models and their components

    State-of-the-art transformers, brick by brick. Curated Transformers is a transformer library for PyTorch. It provides state-of-the-art models that are composed of a set of reusable components. Supports state-of-the-art transformer models, including LLMs such as Falcon, Llama, and Dolly v2. Implementing a feature or bugfix benefits all models. For example, all models support 4/8-bit inference through the bitsandbytes library and each model can use the PyTorch meta device to avoid unnecessary...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    FastKoko

    FastKoko

    Dockerized FastAPI wrapper for Kokoro-82M text-to-speech model

    FastKoko is a self-hosted text-to-speech server built around the Kokoro-82M model and exposed through a FastAPI backend. It is designed to be easy to deploy via Docker, with separate CPU and GPU images so that users can choose between pure CPU inference and NVIDIA GPU acceleration. The project exposes an OpenAI-compatible speech endpoint, which means existing code that talks to the OpenAI audio API can often be pointed at a Kokoro-FastAPI instance with minimal changes. It supports multiple...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    Dia

    Dia

    A TTS model capable of generating ultra-realistic dialogue

    Dia is a neural text-to-speech model designed specifically for generating ultra-realistic dialogue in a single pass. Instead of focusing on isolated sentences or flat narration, it is optimized for conversational audio, complete with natural turn-taking, prosody, and pacing. The model can be conditioned on a reference audio sample, allowing you to control emotion, tone, and other stylistic aspects of the speech. It can also produce nonverbal vocalizations like laughter, coughs, clearing the...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    Automated Interpretability

    Automated Interpretability

    Code for Language models can explain neurons in language models paper

    The automated-interpretability repository implements tools and pipelines for automatically generating, simulating, and scoring explanations of neuron (or latent feature) behavior in neural networks. Instead of relying purely on manual, ad hoc interpretability probing, this repo aims to scale interpretability by using algorithmic methods that produce candidate explanations and assess their quality. It includes a “neuron explainer” component that, given a target neuron or latent feature,...
    Downloads: 2 This Week
    Last Update:
    See Project