Search Results for "learning vector quantization"

Showing 4 open source projects for "learning vector quantization"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Vibes don’t ship, Retool does Icon
    Vibes don’t ship, Retool does

    Start from a prompt and build production-ready apps on your data—with security, permissions, and compliance built in.

    Vibe coding tools create cool demos, but Retool helps you build software your company can actually use. Generate internal apps that connect directly to your data—deployed in your cloud with enterprise security from day one. Build dashboards, admin panels, and workflows with granular permissions already in place. Stop prototyping and ship on a platform that actually passes security review.
    Build apps that ship
  • 1
    Google AI Edge Gallery

    Google AI Edge Gallery

    A gallery that showcases on-device ML/GenAI use cases

    ...Each sample is intended to be both a learning aid and a practical starting point: code is organized to show model loading, pre/post-processing, performance measurement, and common optimization knobs (quantization, NNAPI/Delegate usage, and hardware accelerators). The repo also collects small, well-documented models and conversion scripts so developers can reproduce a pipeline from a full-size model down to a device-friendly artifact.
    Downloads: 43 This Week
    Last Update:
    See Project
  • 2
    whisper.cpp

    whisper.cpp

    Port of OpenAI's Whisper model in C/C++

    whisper.cpp is a lightweight, C/C++ reimplementation of OpenAI’s Whisper automatic speech recognition (ASR) model—designed for efficient, standalone transcription without external dependencies. The entire high-level implementation of the model is contained in whisper.h and whisper.cpp. The rest of the code is part of the ggml machine learning library. The command downloads the base.en model converted to custom ggml format and runs the inference on all .wav samples in the folder samples. whisper.cpp supports integer quantization of the Whisper ggml models. Quantized models require less memory and disk space and depending on the hardware can be processed more efficiently.
    Downloads: 483 This Week
    Last Update:
    See Project
  • 3
    XNNPACK

    XNNPACK

    High-efficiency floating-point neural network inference operators

    XNNPACK is a highly optimized, low-level neural network inference library developed by Google for accelerating deep learning workloads across a variety of hardware architectures, including ARM, x86, WebAssembly, and RISC-V. Rather than serving as a standalone ML framework, XNNPACK provides high-performance computational primitives—such as convolutions, pooling, activation functions, and arithmetic operations—that are integrated into higher-level frameworks like TensorFlow Lite, PyTorch...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4

    DGRLVQ

    Dynamic Generalized Relevance Learning Vector Quantization

    Some of the usual problems for Learning vector quantization (LVQ) based methods are that one cannot optimally guess about the number of prototypes required for initialization for multimodal data structures i.e.these algorithms are very sensitive to initialization of prototypes and one has to pre define the optimal number of prototypes before running the algorithm. If a prototype, for some reasons, is ‘outside’ the cluster which it should represent and if there are points of a different categories in between, then the other points act as a barrier and the prototype will not find its optimum position during training. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • Previous
  • You're on page 1
  • Next