Showing 2 open source projects for "matlab code for image classification using svm"

View related business solutions
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • Create and run cloud-based virtual machines. Icon
    Create and run cloud-based virtual machines.

    Secure and customizable compute service that lets you create and run virtual machines.

    Computing infrastructure in predefined or custom machine sizes to accelerate your cloud transformation. General purpose (E2, N1, N2, N2D) machines provide a good balance of price and performance. Compute optimized (C2) machines offer high-end vCPU performance for compute-intensive workloads. Memory optimized (M2) machines offer the highest memory and are great for in-memory databases. Accelerator optimized (A2) machines are based on the A100 GPU, for very demanding applications.
    Try for free
  • 1
    Exclusively Dark Image Dataset

    Exclusively Dark Image Dataset

    ExDARK dataset is the largest collection of low-light images

    The Exclusively Dark (ExDARK) dataset is one of the largest curated collections of real-world low-light images designed to support research in computer vision tasks under challenging lighting conditions. It contains 7,363 images captured across ten different low-light scenarios, ranging from extremely dark environments to twilight. Each image is annotated with both image-level labels and object-level bounding boxes for 12 object categories, making it suitable for detection and classification...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    BudgetedSVM

    BudgetedSVM

    BudgetedSVM: A C++ Toolbox for Large-scale, Non-linear Classification

    We present BudgetedSVM, a C++ toolbox containing highly optimized implementations of three recently proposed algorithms for scalable training of Support Vector Machine (SVM) approximators: Adaptive Multi-hyperplane Machines (AMM), Budgeted Stochastic Gradient Descent (BSGD), and Low-rank Linearization SVM (LLSVM). BudgetedSVM trains models with accuracy comparable to LibSVM in time comparable to LibLinear, as it allows solving highly non-linear classi fication problems with millions of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next