Showing 2 open source projects for "matlab code for image classification using svm"

View related business solutions
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 1
    Exclusively Dark Image Dataset

    Exclusively Dark Image Dataset

    ExDARK dataset is the largest collection of low-light images

    The Exclusively Dark (ExDARK) dataset is one of the largest curated collections of real-world low-light images designed to support research in computer vision tasks under challenging lighting conditions. It contains 7,363 images captured across ten different low-light scenarios, ranging from extremely dark environments to twilight. Each image is annotated with both image-level labels and object-level bounding boxes for 12 object categories, making it suitable for detection and classification...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    BudgetedSVM

    BudgetedSVM

    BudgetedSVM: A C++ Toolbox for Large-scale, Non-linear Classification

    We present BudgetedSVM, a C++ toolbox containing highly optimized implementations of three recently proposed algorithms for scalable training of Support Vector Machine (SVM) approximators: Adaptive Multi-hyperplane Machines (AMM), Budgeted Stochastic Gradient Descent (BSGD), and Low-rank Linearization SVM (LLSVM). BudgetedSVM trains models with accuracy comparable to LibSVM in time comparable to LibLinear, as it allows solving highly non-linear classi fication problems with millions of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next