Showing 92 open source projects for "framework-arduinoststm32"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    FATE

    FATE

    An industrial grade federated learning framework

    FATE (Federated AI Technology Enabler) is the world's first industrial grade federated learning open source framework to enable enterprises and institutions to collaborate on data while protecting data security and privacy. It implements secure computation protocols based on homomorphic encryption and multi-party computation (MPC). Supporting various federated learning scenarios, FATE now provides a host of federated learning algorithms, including logistic regression, tree-based algorithms, deep learning and transfer learning. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    DualPipe

    DualPipe

    A bidirectional pipeline parallelism algorithm

    DualPipe is a bidirectional pipeline parallelism algorithm open-sourced by DeepSeek, introduced in their DeepSeek-V3 technical framework. The main goal of DualPipe is to maximize overlap between computation and communication phases during distributed training, thus reducing idle GPU time (i.e. “pipeline bubbles”) and improving cluster efficiency. Traditional pipeline parallelism methods (e.g. 1F1B or staggered pipelining) leave gaps because forward and backward phases can’t fully overlap with communication. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Python Outlier Detection

    Python Outlier Detection

    A Python toolbox for scalable outlier detection

    ...PyOD contains multiple models that also exist in scikit-learn. It is possible to train and predict with a large number of detection models in PyOD by leveraging SUOD framework. A benchmark is supplied for select algorithms to provide an overview of the implemented models. In total, 17 benchmark datasets are used for comparison, which can be downloaded at ODDS.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    DomainBed

    DomainBed

    DomainBed is a suite to test domain generalization algorithms

    DomainBed is a PyTorch-based research suite created by Facebook Research for benchmarking and evaluating domain generalization algorithms. It provides a unified framework for comparing methods that aim to train models capable of performing well across unseen domains, as introduced in the paper In Search of Lost Domain Generalization. The library includes a wide range of well-known domain generalization algorithms, from classical baselines such as Empirical Risk Minimization (ERM) and Invariant Risk Minimization (IRM) to more advanced techniques like Domain Adversarial Neural Networks (DANN), Adaptive Risk Minimization (ARM), and Invariance Principle Meets Information Bottleneck (IB-ERM/IB-IRM). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 5
    Evolutionary Computation Framework

    Evolutionary Computation Framework

    C++ framework for application of any type of evolutionary computation.

    ECF is a framework intended for application of any type of evolutionary computation (GA/GP, DE, Clonalg, ES, PSO, ABC, GAn, local search...). It offers simplicity for the end-user (parameterless usage, tutorial) and customization for experienced EC practicioners.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    GNSS-SDR

    GNSS-SDR

    An open source software-defined GNSS receiver

    An open source software-defined Global Navigation Satellite Systems (GNSS) receiver written in C++ and based on the GNU Radio framework.
    Leader badge
    Downloads: 1,172 This Week
    Last Update:
    See Project
  • 7
    MOA - Massive Online Analysis

    MOA - Massive Online Analysis

    Big Data Stream Analytics Framework.

    A framework for learning from a continuous supply of examples, a data stream. Includes classification, regression, clustering, outlier detection and recommender systems. Related to the WEKA project, also written in Java, while scaling to adaptive large scale machine learning.
    Leader badge
    Downloads: 44 This Week
    Last Update:
    See Project
  • 8
    customhys-qt
    This is the official repository for the CUSTOMHyS-Qt software. CUSTOMHyS-Qt is a GUI for the CUSTOMHyS framework, which is an interactive tool for customysing heuristic-based algorithms. The CUSTOMHyS-Qt is written in Python and uses the PyQt5 library for the GUI. Further references about the backend can be found in the CUSTOMHyS repository.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    YACS (Yet Another Constraint Solver) is a Java library and an object-oriented framework for constraint solvers. It supports propagating and solving of constraint satisfaction problems with finite and infinite domains (discrete values and real intervals).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 10

    FRODO 2

    Open-Source Framework for Distributed Constraint Optimization (DCOP)

    FRODO is a Java platform to solve Distributed Constraint Satisfaction Problems (DisCSPs) and Optimization Problems (DCOPs). It provides implementations for a variety of algorithms, including DPOP (and its variants), ADOPT, SynchBB, DSA...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    DifferenceKit

    DifferenceKit

    A fast and flexible O(n) difference algorithm framework

    A fast and flexible O(n) difference algorithm framework for Swift collection. The algorithm is optimized based on the Paul Heckel’s algorithm. This is a diffing algorithm developed for Carbon, works stand alone. The algorithm optimized based on the Paul Heckel’s algorithm. See also his paper A technique for isolating differences between files released in 1978. It allows all kind of diffs to be calculated in linear time O(n).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Detectron2

    Detectron2

    Next-generation platform for object detection and segmentation

    Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up rewrite of the previous version, Detectron, and it originates from maskrcnn-benchmark. It is powered by the PyTorch deep learning framework. Includes more features such as panoptic segmentation, Densepose, Cascade R-CNN, rotated bounding boxes, PointRend, DeepLab, etc. Can be used as a library to support different projects on top of it. We'll open source more research projects in this way. It trains much faster. Models can be exported to TorchScript format or Caffe2 format for deployment. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    frontend-interview

    frontend-interview

    The strongest front-end interview guide in the universe

    This is a review summary project about preparing for front-end interviews that I have summarized, and the project is updated from time to time. This is not only a strategy for job interviews, but also a collection of front-end ers to examine themselves and achieve breakthroughs. I hope that through this guide, everyone can open up their own lines of Ren and Du, and go further on the road to the front. This warehouse uses a large number of diagrams to convey knowledge. The so-called picture...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Coach

    Coach

    Enables easy experimentation with state of the art algorithms

    Coach is a python framework that models the interaction between an agent and an environment in a modular way. With Coach, it is possible to model an agent by combining various building blocks, and training the agent on multiple environments. The available environments allow testing the agent in different fields such as robotics, autonomous driving, games and more.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Dopamine

    Dopamine

    Framework for prototyping of reinforcement learning algorithms

    Dopamine is a research framework for fast prototyping of reinforcement learning algorithms. It aims to fill the need for a small, easily grokked codebase in which users can freely experiment with wild ideas (speculative research). This first version focuses on supporting the state-of-the-art, single-GPU Rainbow agent (Hessel et al., 2018) applied to Atari 2600 game-playing (Bellemare et al., 2013).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Active Learning

    Active Learning

    Framework and examples for active learning with machine learning model

    ...It includes several established active learning strategies such as uncertainty sampling, k-center greedy selection, and bandit-based methods, while also allowing for custom algorithm implementations. The framework integrates with both classical machine learning models (SVM, logistic regression) and neural networks.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    Code Catalog in Python

    Code Catalog in Python

    Algorithms and data structures for review for coding interview

    ...Each snippet aims to be self-contained and easy to study, with clear inputs, outputs, and the essential logic on display. The catalog format lets you scan for an example, copy it, and adapt it to your use case without wading through a large framework. It favors clarity over micro-optimizations so learners can grasp the idea before worrying about edge performance. Over time it becomes a personal cookbook of solutions you can remix across projects. This approach is especially helpful when you need a quick refresher on a technique you haven’t used in a while.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Physhun is a Java framework for building and executing finite state machines in J2SE and J2EE environments. State models are defined as collections of Spring beans, and do not use proprietary modeling languages. The framework is simple and flexible.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19

    TEESer

    Tool for Engineering Emergent Selforganizing bEhavioR

    ...Designers can continue to use their domain tools such as favorable simulator and by pluging it into the framework can take advantage of distributed simulations in the grid, various analyzers, optimizers (particle swarm optimization, genetic algorithms, ...). See Wiki pages for more information.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    FUMOLA - Functional Mock-up Laboratory

    FUMOLA - Functional Mock-up Laboratory

    An FMI-based co-simulation framework.

    FUMOLA is a co-simulation framework specifically designed to support the features offered by the FMI specification. It provides a flexible platform that allows to configure and execute co-simulation setups in an easy way. FUMOLA is developed on top of the Ptolemy II framework (https://ptolemy.eecs.berkeley.edu) and the FMI++ library (http://fmipp.sourceforge.net).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    CoRoPa stands for Computational Rough Paths. The aim of CoRoPa is to provide a software framework for various ideas related to Rough Path Theory, including rough differential equations and the digital description of serial data streams.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    jMetal
    jMetal is an object-oriented Java-based framework for solving multi-objective optimization problems with metaheuristics.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    Opt4J

    Opt4J

    Modular Java framework for meta-heuristic optimization

    Opt4J is an open source Java-based framework for evolutionary computation. It contains a set of (multi-objective) optimization algorithms such as evolutionary algorithms (including SPEA2 and NSGA2), differential evolution, particle swarm optimization, and simulated annealing. The benchmarks that are included comprise ZDT, DTLZ, WFG, and the knapsack problem. The goal of Opt4J is to simplify the evolutionary optimization of user-defined problems as well as the implementation of arbitrary meta-heuristic optimization algorithms. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    cachelet

    cachelet

    Cachelet - the simplest java framework for general purpose caching

    Cachelet is a java framework for general purpose caching very simple and easy to use. And it has everything you need for caching without complications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Modular toolkit for Data Processing MDP
    The Modular toolkit for Data Processing (MDP) is a Python data processing framework. From the user's perspective, MDP is a collection of supervised and unsupervised learning algorithms and other data processing units that can be combined into data processing sequences and more complex feed-forward network architectures. From the scientific developer's perspective, MDP is a modular framework, which can easily be expanded.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • Next