Showing 5 open source projects for "model train design"

View related business solutions
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • Retool your internal operations Icon
    Retool your internal operations

    Generate secure, production-grade apps that connect to your business data. Not just prototypes, but tools your team can actually deploy.

    Build internal software that meets enterprise security standards without waiting on engineering resources. Retool connects to your databases, APIs, and data sources while maintaining the permissions and controls you need. Create custom dashboards, admin tools, and workflows from natural language prompts—all deployed in your cloud with security baked in. Stop duct-taping operations together, start building in Retool.
    Build an app in Retool
  • 1
    DomainBed

    DomainBed

    DomainBed is a suite to test domain generalization algorithms

    DomainBed is a PyTorch-based research suite created by Facebook Research for benchmarking and evaluating domain generalization algorithms. It provides a unified framework for comparing methods that aim to train models capable of performing well across unseen domains, as introduced in the paper In Search of Lost Domain Generalization. The library includes a wide range of well-known domain generalization algorithms, from classical baselines such as Empirical Risk Minimization (ERM) and...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Groove
    NOTE: The GROOVE codebase has moved to https://github.com/nl-utwente-groove
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3

    DuranDuranbot

    Teachable/trainable artificially intelligent music bot

    A teachable/trainable artificially intelligent music bot fundamentally inspired by how the new wave band Duran Duran composes music. This program utilizes many algorithmic/AI techniques/processes, including machine learning; which allow you to teach/train it to compose music which you prefer... and the technique which is the foundation of the design of DuranDuranbot, which was directly inspired by how Duran Duran writes music........ Called, "bit by bit circular composition"....... and it's explanation can be found here - https://scsynth.org/t/bit-by-bit-circular-composition/1107 This program is written in the SuperCollider programming language - https://en.wikipedia.org/wiki/SuperCollider Contact - ken_brant@ymail.com
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Supervised Reptile

    Supervised Reptile

    Code for the paper "On First-Order Meta-Learning Algorithms"

    The supervised-reptile repository contains code associated with the paper “On First-Order Meta-Learning Algorithms”, which introduces Reptile, a meta-learning algorithm for learning model parameter initializations that adapt quickly to new tasks. The implementation here is aimed at supervised few-shot learning settings (e.g. Omniglot, Mini-ImageNet), not reinforcement learning, and includes scripts to run training and evaluation for few-shot classification. The fundamental idea is: sample a task, train on that task (inner loop), and then move the initialization parameters toward the adapted parameters (outer loop). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    ACADO Toolkit

    ACADO Toolkit

    Toolkit for Automatic Control and Dynamic Optimization

    ACADO Toolkit is a software environment and algorithm collection for automatic control and dynamic optimization. It provides a general framework for using a great variety of algorithms for direct optimal control, including model predictive control, state and parameter estimation and robust optimization. ACADO Toolkit is implemented as self-contained C++ code and comes along with user-friendly MATLAB interface. The object-oriented design allows for convenient coupling of existing optimization packages and for extending it with user-written optimization routines.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next