Showing 1 open source project for "model train design"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Smart Business Texting that Generates Pipeline Icon
    Smart Business Texting that Generates Pipeline

    Create and convert pipeline at scale through industry leading SMS campaigns, automation, and conversation management.

    TextUs is the leading text messaging service provider for businesses that want to engage in real-time conversations with customers, leads, employees and candidates. Text messaging is one of the most engaging ways to communicate with customers, candidates, employees and leads. 1:1, two-way messaging encourages response and engagement. Text messages help teams get 10x the response rate over phone and email. Business text messaging has become a more viable form of communication than traditional mediums. The TextUs user experience is intentionally designed to resemble the familiar SMS inbox, allowing users to easily manage contacts, conversations, and campaigns. Work right from your desktop with the TextUs web app or use the Chrome extension alongside your ATS or CRM. Leverage the mobile app for on-the-go sending and responding.
    Learn More
  • 1
    Supervised Reptile

    Supervised Reptile

    Code for the paper "On First-Order Meta-Learning Algorithms"

    The supervised-reptile repository contains code associated with the paper “On First-Order Meta-Learning Algorithms”, which introduces Reptile, a meta-learning algorithm for learning model parameter initializations that adapt quickly to new tasks. The implementation here is aimed at supervised few-shot learning settings (e.g. Omniglot, Mini-ImageNet), not reinforcement learning, and includes scripts to run training and evaluation for few-shot classification. The fundamental idea is: sample a task, train on that task (inner loop), and then move the initialization parameters toward the adapted parameters (outer loop). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next