Showing 3 open source projects for "machine"

View related business solutions
  • Enterprise-grade ITSM, for every business Icon
    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity.

    Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
    Try it Free
  • Easily Host LLMs and Web Apps on Cloud Run Icon
    Easily Host LLMs and Web Apps on Cloud Run

    Run everything from popular models with on-demand NVIDIA L4 GPUs to web apps without infrastructure management.

    Run frontend and backend services, batch jobs, host LLMs, and queue processing workloads without the need to manage infrastructure. Cloud Run gives you on-demand GPU access for hosting LLMs and running real-time AI—with 5-second cold starts and automatic scale-to-zero so you only pay for actual usage. New customers get $300 in free credit to start.
    Try Cloud Run Free
  • 1
    PyBroker

    PyBroker

    Algorithmic Trading in Python with Machine Learning

    Are you looking to enhance your trading strategies with the power of Python and machine learning? Then you need to check out PyBroker! This Python framework is designed for developing algorithmic trading strategies, with a focus on strategies that use machine learning. With PyBroker, you can easily create and fine-tune trading rules, build powerful models, and gain valuable insights into your strategy’s performance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    AIQuant

    AIQuant

    AI-powered platform for quantitative trading

    ai_quant_trade is an AI-powered, one-stop open-source platform for quantitative trading—ranging from learning and simulation to actual trading. It consolidates stock trading knowledge, strategy examples, factor discovery, traditional rules-based strategies, various machine learning and deep learning methods, reinforcement learning, graph neural networks, high-frequency trading, C++ deployment, and Jupyter Notebook examples for practical hands-on use. Stock trading strategies: large models, factor mining, traditional strategies, machine learning, deep learning, reinforcement learning, graph networks, high-frequency trading, etc. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    AlphaPy

    AlphaPy

    Python AutoML for Trading Systems and Sports Betting

    ...Built on popular libraries like scikit-learn and pandas, it enables data scientists and speculators to craft predictive models, ensemble strategies, and automated forecasting systems with minimal setup. Run machine learning models using scikit-learn, Keras, xgboost, LightGBM, and CatBoost. Generate blended or stacked ensembles. Create models for analyzing the markets with MarketFlow. Develop trading systems and analyze portfolios using MarketFlow and Quantopian's pyfolio.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB