Showing 2 open source projects for "ai research"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    Qbot

    Qbot

    AI-powered Quantitative Investment Research Platform

    ...The project places special emphasis on AI-driven strategies — including supervised learning, reinforcement learning and multi-factor models — and offers a “model zoo” and example strategies to help users get started. For evaluation and analysis, Qbot integrates reporting and visualization (tearsheets, metrics) so you can compare performance across runs and inspect trade-level behavior.
    Downloads: 14 This Week
    Last Update:
    See Project
  • 2
    NautilusTrader

    NautilusTrader

    A high-performance algorithmic trading platform

    NautilusTrader is an open-source, high-performance, production-grade algorithmic trading platform, provides quantitative traders with the ability to backtest portfolios of automated trading strategies on historical data with an event-driven engine, and also deploy those same strategies live, with no code changes. The platform is 'AI-first', designed to develop and deploy algorithmic trading strategies within a highly performant and robust Python native environment. This helps to address the parity challenge of keeping the Python research/backtest environment, consistent with the production live trading environment. NautilusTraders design, architecture and implementation philosophy holds software correctness and safety at the highest level, with the aim of supporting Python native, mission-critical, trading system backtesting and live deployment workloads.
    Downloads: 9 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next