Showing 11 open source projects for "python source codes"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 1
    AIQuant

    AIQuant

    AI-powered platform for quantitative trading

    ai_quant_trade is an AI-powered, one-stop open-source platform for quantitative trading—ranging from learning and simulation to actual trading. It consolidates stock trading knowledge, strategy examples, factor discovery, traditional rules-based strategies, various machine learning and deep learning methods, reinforcement learning, graph neural networks, high-frequency trading, C++ deployment, and Jupyter Notebook examples for practical hands-on use. Stock trading strategies: large models,...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 2
    AutoTrader

    AutoTrader

    A Python-based development platform for automated trading systems

    AutoTrader is a Python-based platform—now archived—designed to facilitate the full lifecycle of automated trading systems. It provides tools for backtesting, strategy optimization, visualization, and live trading integration. A feature-rich trading simulator, supporting backtesting and paper trading. The 'virtual broker' allows you to test your strategies in a risk-free, simulated environment before going live. Capable of simulating multiple order types, stop-losse,s and take-profits,...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    NautilusTrader

    NautilusTrader

    A high-performance algorithmic trading platform

    NautilusTrader is an open-source, high-performance, production-grade algorithmic trading platform, provides quantitative traders with the ability to backtest portfolios of automated trading strategies on historical data with an event-driven engine, and also deploy those same strategies live, with no code changes. The platform is 'AI-first', designed to develop and deploy algorithmic trading strategies within a highly performant and robust Python native environment.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    PyBroker

    PyBroker

    Algorithmic Trading in Python with Machine Learning

    Are you looking to enhance your trading strategies with the power of Python and machine learning? Then you need to check out PyBroker! This Python framework is designed for developing algorithmic trading strategies, with a focus on strategies that use machine learning. With PyBroker, you can easily create and fine-tune trading rules, build powerful models, and gain valuable insights into your strategy’s performance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Create and run cloud-based virtual machines. Icon
    Create and run cloud-based virtual machines.

    Secure and customizable compute service that lets you create and run virtual machines.

    Computing infrastructure in predefined or custom machine sizes to accelerate your cloud transformation. General purpose (E2, N1, N2, N2D) machines provide a good balance of price and performance. Compute optimized (C2) machines offer high-end vCPU performance for compute-intensive workloads. Memory optimized (M2) machines offer the highest memory and are great for in-memory databases. Accelerator optimized (A2) machines are based on the A100 GPU, for very demanding applications.
    Try for free
  • 5
    Qbot

    Qbot

    AI-powered Quantitative Investment Research Platform

    Qbot is an open source quantitative research and trading platform that provides a full pipeline from data ingestion and strategy development to backtesting, simulation, and (optionally) live trading. It bundles a lightweight GUI client (built with wxPython) and a modular backend so researchers can iterate on strategies, run batch backtests, and validate ideas in a near-real simulated environment that models latency and slippage. The project places special emphasis on AI-driven strategies —...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    Awesome-Quant

    Awesome-Quant

    A curated list of insanely awesome libraries, packages and resources

    awesome-quant is a curated list (“awesome list”) of libraries, packages, articles, and resources for quantitative finance (“quants”). It includes tools, frameworks, research papers, blogs, datasets, etc. It aims to help people working in algorithmic trading, quant investing, financial engineering, etc., find useful open source or educational resources. Licensed under typical “awesome” list standards.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    AnyTrading

    AnyTrading

    The most simple, flexible, and comprehensive OpenAI Gym trading

    gym-anytrading is an OpenAI Gym-compatible environment designed for developing and testing reinforcement learning algorithms on trading strategies. It simulates trading environments for financial markets, including stocks and forex.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    TradingGym

    TradingGym

    Trading backtesting environment for training reinforcement learning

    TradingGym is a toolkit (in Python) for creating trading and backtesting environments, especially for reinforcement learning agents, but also for simpler rule-based algorithms. It follows a design inspired by OpenAI Gym, offering various environments, data formats (tick data and OHLC), and tools to simulate trading with costs, position limits, observation windows etc. Licensed under MIT. This training environment was originally designed for tickdata, but also supports OHLC data format. WIP....
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    Optopsy

    Optopsy

    A nimble options backtesting library for Python

    Optopsy is a Python-based, nimble backtesting and statistics library focused on evaluating options trading strategies like calls, puts, straddles, spreads, and more, using pandas-driven analysis. The csv_data() function is a convenience function. Under the hood it uses Panda's read_csv() function to do the import. There are other parameters that can help with loading the csv data, consult the code/future documentation to see how to use them. Optopsy is a small simple library that offloads...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 10
    Zipline

    Zipline

    Zipline, a Pythonic algorithmic trading library

    Zipline is a Pythonic algorithmic trading library. It is an event-driven system for backtesting. Zipline is currently used in production as the backtesting and live-trading engine powering Quantopian -- a free, community-centered, hosted platform for building and executing trading strategies. Quantopian also offers a fully managed service for professionals that includes Zipline, Alphalens, Pyfolio, FactSet data, and more. Installing Zipline is slightly more involved than the average Python...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    AlphaPy

    AlphaPy

    Python AutoML for Trading Systems and Sports Betting

    AlphaPy is a Python-based AutoML framework tailored for trading systems and sports betting applications. Built on popular libraries like scikit-learn and pandas, it enables data scientists and speculators to craft predictive models, ensemble strategies, and automated forecasting systems with minimal setup. Run machine learning models using scikit-learn, Keras, xgboost, LightGBM, and CatBoost. Generate blended or stacked ensembles. Create models for analyzing the markets with MarketFlow....
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next