Showing 2 open source projects for "2d 3d"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • 1
    Video Diffusion - Pytorch

    Video Diffusion - Pytorch

    Implementation of Video Diffusion Models

    ...Implementation of Video Diffusion Models, Jonathan Ho's new paper extending DDPMs to Video Generation - in Pytorch. It uses a special space-time factored U-net, extending generation from 2D images to 3D videos. 14k for difficult moving mnist (converging much faster and better than NUWA) - wip. Any new developments for text-to-video synthesis will be centralized at Imagen-pytorch. For conditioning on text, they derived text embeddings by first passing the tokenized text through BERT-large. You can also directly pass in the descriptions of the video as strings, if you plan on using BERT-base for text conditioning. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Make-A-Video - Pytorch (wip)

    Make-A-Video - Pytorch (wip)

    Implementation of Make-A-Video, new SOTA text to video generator

    ...Passing in images (if one were to pretrain on images first), both temporal convolution and attention will be automatically skipped. In other words, you can use this straightforwardly in your 2d Unet and then port it over to a 3d Unet once that phase of the training is done.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next