AI Text Generators for Linux

View 11 business solutions
  • Our Free Plans just got better! | Auth0 by Okta Icon
    Our Free Plans just got better! | Auth0 by Okta

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your secuirty. Auth0 now, thank yourself later.
    Try free now
  • Manage printing in a cost-efficient and eco-friendly way with Gelato. Icon
    Manage printing in a cost-efficient and eco-friendly way with Gelato.

    Gelato offers an extensive catalog of custom products, a zero-inventory business model, and free designing tools—all in one place.

    The world's largest print on demand network with 140+ production partners across 32 countries. Gelato offers end-to-end design, production and logistics for individuals looking to start their own business today!
    Sign up for Free
  • 1
    PHP Client For NLP Cloud

    PHP Client For NLP Cloud

    NLP Cloud serves high performance pre-trained or custom models for NER

    NLP Cloud serves high performance pre-trained or custom models for NER, sentiment-analysis, classification, summarization, dialogue summarization, paraphrasing, intent classification, product description and ad generation, chatbot, grammar and spelling correction, keywords and keyphrases extraction, text generation, image generation, blog post generation, code generation, question answering, automatic speech recognition, machine translation, language detection, semantic search, semantic similarity, tokenization, POS tagging, embeddings, and dependency parsing. It is ready for production, served through a REST API. You can either use the NLP Cloud pre-trained models, fine-tune your own models, or deploy your own models. Pass the model you want to use and the NLP Cloud token to the client during initialization. If you are making asynchronous requests, you will always receive a quick response containing a URL.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Pipeline for training Language Models

    Pipeline for training Language Models

    Pipeline for training Language Models using PyTorch.

    Pipeline for training Language Models using PyTorch. Inspired by Yandex Data School NLP Course (week 03: Language Modeling) Prepared text file with space-separated words on each line.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Python Client For NLP Cloud

    Python Client For NLP Cloud

    NLP Cloud serves high performance pre-trained or custom models for NER

    NLP Cloud serves high performance pre-trained or custom models for NER, sentiment-analysis, classification, summarization, dialogue summarization, paraphrasing, intent classification, product description and ad generation, chatbot, grammar and spelling correction, keywords and keyphrases extraction, text generation, image generation, blog post generation, source code generation, question answering, automatic speech recognition, machine translation, language detection, semantic search, semantic similarity, tokenization, POS tagging, embeddings, and dependency parsing. It is ready for production, served through a REST API. You can either use the NLP Cloud pre-trained models, fine-tune your own models, or deploy your own models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Regex

    Regex

    Generate matching and non matching strings based on regex patterns

    Generate matching and non-matching strings. This is a java library that, given a regex pattern, allows to generation of matching strings. Iterate through unique matching strings. Generate not matching strings. Follow the link to Online IDE with created project: JDoodle. Enter your pattern and see the results. By design a+, a* and a{n,} patterns in regex imply an infinite number of characters should be matched. When generating data, that would mean values of infinite length might be generated. It is highly doubtful anyone would require a string of infinite length, thus I've artificially limited repetitions in such patterns to 100 symbols when generating random values. Use a{n,m} if you require some specific number of repetitions. It is suggested to avoid using such infinite patterns to generate data based on regex.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    ShortGPT Lite

    ShortGPT Lite

    Get short and concise answers from GPT 3/GPT 4

    Short GPT Lite is a simple tool for Windows/Linux based on OpenAI's GPT3/GPT4 large language model. The main focus is to get quick and concise answers from GPT. ShortGPT is now available on Android : https://play.google.com/store/apps/details?id=io.github.rupeshs.shortgpt_lite ShortGPT basic web version is now available try it for free: https://nolowiz.com/shortgpt-get-short-and-concise-answers-from-gpt-for-free/
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    TFKit

    TFKit

    Handling multiple nlp task in one pipeline

    TFKit is a tool kit mainly for language generation. It leverages the use of transformers on many tasks with different models in this all-in-one framework. All you need is a little change of config. You can use tfkit for model training and evaluation with tfkit-train and tfkit-eval. The key to combine different task together is to make different task with same data format. All data will be in csv format - tfkit will use csv for all task, normally it will have two columns, first columns is the input of models, the second column is the output of models. Plane text with no tokenization - there is no need to tokenize text before training, or do re-calculating for tokenization, tfkit will handle it for you. No header is needed.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Texar-PyTorch

    Texar-PyTorch

    Integrating the Best of TF into PyTorch, for Machine Learning

    Texar-PyTorch is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides a library of easy-to-use ML modules and functionalities for composing whatever models and algorithms. The tool is designed for both researchers and practitioners for fast prototyping and experimentation. Texar-PyTorch was originally developed and is actively contributed by Petuum and CMU in collaboration with other institutes. A mirror of this repository is maintained by Petuum Open Source. Texar-PyTorch integrates many of the best features of TensorFlow into PyTorch, delivering highly usable and customizable modules superior to PyTorch native ones. Texar-PyTorch (this repo) and Texar-TF have mostly the same interfaces. Both further combine the best design of TF and PyTorch. Data processing, model architectures, loss functions, training and inference algorithms, evaluation, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Text Gen

    Text Gen

    Almost state of art text generation library

    Almost state of art text generation library. Text gen is a python library that allow you build a custom text generation model with ease. Something sweet built with Tensorflow and Pytorch(coming soon). Load your data, your data must be in a text format. Download the example data from the example folder. Tune your model to know the best optimizer, activation method to use.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    TextBox

    TextBox

    A text generation library with pre-trained language models github.com

    TextBox 2.0 is an up-to-date text generation library based on Python and PyTorch focusing on building a unified and standardized pipeline for applying pre-trained language models to text generation. From a task perspective, we consider 13 common text generation tasks such as translation, story generation, and style transfer, and their corresponding 83 widely-used datasets. From a model perspective, we incorporate 47 pre-trained language models/modules covering the categories of general, translation, Chinese, dialogue, controllable, distilled, prompting, and lightweight models (modules). From a training perspective, we support 4 pre-training objectives and 4 efficient and robust training strategies, such as distributed data parallel and efficient generation. Compared with the previous version of TextBox, this extension mainly focuses on building a unified, flexible, and standardized framework for better supporting PLM-based text generation models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Accounting Software for Small Businesses | Xero Icon
    Accounting Software for Small Businesses | Xero

    Save 90% for 6 months on Xero's award-winning accounting and online bookkeeping platform for businesses of all sizes and stages of growth.

    Xero offers a robust ecosystem of connected apps and integrations with banks and financial institutions, enabling small businesses to access a wide range of solutions within Xero's open platform to streamline operations and manage finances. Additionally, accounting and bookkeeping firms benefit from efficient compliance tools, advanced practice management software, and a cloud-based unified accounting ledger for all clients, centralized in one place.
    Get 90% off for 6 months
  • 10
    abstract2paper

    abstract2paper

    Auto-generate an entire paper from a prompt or abstract using NLP

    Enter your abstract into the little doohicky here, and quicker'n you can blink your eyes1, a shiny new paper'll come right out for ya! What are you waiting for? Click the "doohicky" link above to get started, and then click the link to open the demo notebook in Google Colaboratory. To run the demo as a Jupyter notebook (e.g., locally), use this version instead. Note: to compile a PDF of your auto-generated paper (when you run the demo locally), you'll need to have a working LaTeX installation on your machine (e.g., so that pdflatex is a recognized system command). The notebook will also automatically install the transformers library if it's not already available in your local environment. In its unmodified state, the demo notebooks use the abstract from the GPT-3 paper as the "seed" for a new paper. Each time you run the notebook you'll get a new result.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    artikelschreiber

    artikelschreiber

    Frontend and Backend Code for ArtikelSchreiber.com and UNAIQUE.NET

    Frontend and Backend Code for ArtikelSchreiber.com and UNAIQUE.NET Text Generator deutsch - Dein KI Text Generator kostenlos mit Künstlicher Intelligenz The Software as a Service can be found here: SEO Optimizer: Ghost Writer - Hausarbeiten schreiben mit KI and KI Text Generator This product includes software developed by Sebastian Enger, M.Sc. Copyright (c) 2023, Sebastian Enger, M.Sc. All rights reserved. Frontend and Backend Source Code for Project: https://github.com/sebastianenger1981/ https://www.artikelschreiber.com/ https://www.artikelschreiben.com/ https://www.unaique.net/
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    commit-autosuggestions

    commit-autosuggestions

    A tool that AI automatically recommends commit messages

    This is implementation of CommitBERT: Commit Message Generation Using Pre-Trained Programming Language Model. CommitBERT is accepted in ACL workshop : NLP4Prog. Have you ever hesitated to write a commit message? Now get a commit message from Artificial Intelligence! CodeBERT: A Pre-Trained Model for Programming and Natural Languages introduces a pre-trained model in a combination of Program Language and Natural Language(PL-NL). It also introduces the problem of converting code into natural language (Code Documentation Generation). We can use CodeBERT to create a model that generates a commit message when code is added. However, most code changes are not made only by add of the code, and some parts of the code are deleted. We plan to slowly conquer languages that are not currently supported. To run this project, you need a flask-based inference server (GPU) and a client (commit module). If you don't have a GPU, don't worry, you can use it through Google Colab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    node-markov-generator

    node-markov-generator

    Generates simple sentences based on given text corpus

    This simple generator emits short sentences based on the given text corpus using a Markov chain. To put it simply, it works kinda like word suggestions that you have while typing messages in your smartphone. It analyzes which word is followed by which in the given corpus and how often. And then, for any given word it tries to predict what the next one might be. Here you create an instance of TextGenerator passing an array of strings to it - it represents your text corpus which will be used to "train" the generator. The more strings/sentences you pass, the more diverse results you get, so you'd better pass like hundreds of them, or even more! If you have your texts in an external file, you can pass the path to it as an argument for TextGenerator's constructor.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    node-red-contrib-custom-chatgpt
    A Node-RED node that interacts with OpenAI machine learning models like "ChatGPT". Install with the built-in Node-RED Palette manager. When editing the properties of the node, to get your OPENAI_API_KEY log in to ChatGPT. Create a new secret key" then copy and paste the "API key" into the node API_KEY property value. msg.payload should be a well-written prompt that provides enough information for the model to know what you want and how it should respond. Its success generally depends on the complexity of the task and quality of your prompt. A good rule of thumb is to think about how you would write a word problem for a middle schooler to solve. msg.payload should be a well-written prompt that provides enough information for the model to know what you want and how it should respond.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    onnxt5

    onnxt5

    Summarization, translation, sentiment-analysis, text-generation, etc.

    Summarization, translation, sentiment analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX. This package is still in the alpha stage, therefore some functionalities such as beam searches are still in development. The simplest way to get started for generation is to use the default pre-trained version of T5 on ONNX included in the package. Please note that the first time you call get_encoder_decoder_tokenizer, the models are being downloaded which might take a minute or two. Other tasks just require to change the prefix in your prompt, for instance for summarization. Run any of the T5 trained tasks in a line (translation, summarization, sentiment analysis, completion, generation) Export your own T5 models to ONNX easily. Utility functions to generate what you need quickly. Up to 4X speedup compared to PyTorch execution for smaller contexts.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    php-text-generator

    php-text-generator

    Fast SEO text generator on a mask

    Fast SEO text generator on a mask. Written in PHP. I do not use regular expressions and the fastest. I covered tests and simple! Supporting recursive text generation rules. It supports multiple encodings. This package implements the functionality of a similar package for Go Lang. It supports multiple encodings. Supporting recursive text generation rules. Fast! Does not use regular expressions. Easy wrapping thanks to the integrated interface. Covered tests. Written by PSR standards and 100% covered with documentation (PHP-Doc) Without external dependencies. The code is checked by the static analyzer PhpStan lvl 7.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    text-generator

    text-generator

    Golang text generator for generate SEO texts

    Golang text generator for generate SEO texts. Fast text generator on a mask. Written in Golang. I do not use regular expressions and the fastest. I covered tests and simple! Supporting recursive text generation rules.
    Downloads: 0 This Week
    Last Update:
    See Project