Showing 5 open source projects for "neural python"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • 1
    IndexTTS2

    IndexTTS2

    Industrial-level controllable zero-shot text-to-speech system

    IndexTTS is a modern, zero-shot text-to-speech (TTS) system engineered to deliver high-quality, natural-sounding speech synthesis with few requirements and strong voice-cloning capabilities. It builds on state-of-the-art models such as XTTS and other modern neural TTS backbones, improving them with a conformer-based speech conditional encoder and upgrading the decoder to a high-quality vocoder (BigVGAN2), leading to clearer and more natural audio output. The system supports zero-shot voice...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    CLIP

    CLIP

    CLIP, Predict the most relevant text snippet given an image

    CLIP (Contrastive Language-Image Pretraining) is a neural model that links images and text in a shared embedding space, allowing zero-shot image classification, similarity search, and multimodal alignment. It was trained on large sets of (image, caption) pairs using a contrastive objective: images and their matching text are pulled together in embedding space, while mismatches are pushed apart. Once trained, you can give it any text labels and ask it to pick which label best matches a given...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Demucs

    Demucs

    Code for the paper Hybrid Spectrogram and Waveform Source Separation

    Demucs (Deep Extractor for Music Sources) is a deep-learning framework for music source separation—extracting individual instrument or vocal tracks from a mixed audio file. The system is based on a U-Net-like convolutional architecture combined with recurrent and transformer elements to capture both short-term and long-term temporal structure. It processes raw waveforms directly rather than spectrograms, allowing for higher-quality reconstruction and fewer artifacts in separated tracks. The...
    Downloads: 21 This Week
    Last Update:
    See Project
  • 4
    ControlNet

    ControlNet

    Let us control diffusion models

    ControlNet is a neural network architecture designed to add conditional control to text-to-image diffusion models. Rather than training from scratch, ControlNet “locks” the weights of a pre-trained diffusion model and introduces a parallel trainable branch that learns additional conditions—like edges, depth maps, segmentation, human pose, scribbles, or other guidance signals. This allows the system to control where and how the model should focus during generation, enabling users to steer...
    Downloads: 4 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 5
    VALL-E

    VALL-E

    PyTorch implementation of VALL-E (Zero-Shot Text-To-Speech)

    We introduce a language modeling approach for text to speech synthesis (TTS). Specifically, we train a neural codec language model (called VALL-E) using discrete codes derived from an off-the-shelf neural audio codec model, and regard TTS as a conditional language modeling task rather than continuous signal regression as in previous work. During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems....
    Downloads: 3 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next