Showing 3 open source projects for "malware-patch"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    MiniMax-01

    MiniMax-01

    Large-language-model & vision-language-model based on Linear Attention

    MiniMax-01 is the official repository for two flagship models: MiniMax-Text-01, a long-context language model, and MiniMax-VL-01, a vision-language model built on top of it. MiniMax-Text-01 uses a hybrid attention architecture that blends Lightning Attention, standard softmax attention, and Mixture-of-Experts (MoE) routing to achieve both high throughput and long-context reasoning. It has 456 billion total parameters with 45.9 billion activated per token and is trained with advanced parallel...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    MAE (Masked Autoencoders)

    MAE (Masked Autoencoders)

    PyTorch implementation of MAE

    MAE (Masked Autoencoders) is a self-supervised learning framework for visual representation learning using masked image modeling. It trains a Vision Transformer (ViT) by randomly masking a high percentage of image patches (typically 75%) and reconstructing the missing content from the remaining visible patches. This forces the model to learn semantic structure and global context without supervision. The encoder processes only the visible patches, while a lightweight decoder reconstructs the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    TimeSformer

    TimeSformer

    The official pytorch implementation of our paper

    TimeSformer is a vision transformer architecture for video that extends the standard attention mechanism into spatiotemporal attention. The model alternates attention along spatial and temporal dimensions (or designs variants like divided attention) so that it can capture both appearance and motion cues in video. Because the attention is global across frames, TimeSformer can reason about dependencies across long time spans, not just local neighborhoods. The official implementation in PyTorch...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next