Showing 14 open source projects for "data vision"

View related business solutions
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    DeiT (Data-efficient Image Transformers)
    DeiT (Data-efficient Image Transformers) shows that Vision Transformers can be trained competitively on ImageNet-1k without external data by using strong training recipes and knowledge distillation. Its key idea is a specialized distillation strategy—including a learnable “distillation token”—that lets a transformer learn effectively from a CNN or transformer teacher on modest-scale datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    MetaCLIP

    MetaCLIP

    ICLR2024 Spotlight: curation/training code, metadata, distribution

    MetaCLIP is a research codebase that extends the CLIP framework into a meta-learning / continual learning regime, aiming to adapt CLIP-style models to new tasks or domains efficiently. The goal is to preserve CLIP’s strong zero-shot transfer capability while enabling fast adaptation to domain shifts or novel class sets with minimal data and without catastrophic forgetting. The repository provides training logic, adaptation strategies (e.g. prompt tuning, adapter modules), and evaluation across base and target domains to measure how well the model retains its general knowledge while specializing as needed. It includes utilities to fine-tune vision-language embeddings, compute prompt or adapter updates, and benchmark across transfer and retention metrics. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    NVIDIA Isaac GR00T

    NVIDIA Isaac GR00T

    NVIDIA Isaac GR00T N1.5 is the world's first open foundation model

    NVIDIA Isaac‑GR00T N1.5 is an open-source foundation model engineered for generalized humanoid robot reasoning and manipulation skills. It accepts multimodal inputs—such as language and images—and uses a diffusion transformer architecture built upon vision-language encoders, enabling adaptive robot behaviors across diverse environments. It is designed to be customizable via post-training with real or synthetic data. The vision-language model remains frozen during both pretraining and finetuning, preserving language understanding and improving generalization. Streamlined MLP connection between vision encoder and LLM with added layer normalization.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    DINOv3

    DINOv3

    Reference PyTorch implementation and models for DINOv3

    DINOv3 is the third-generation iteration of Meta’s self-supervised visual representation learning framework, building upon the ideas from DINO and DINOv2. It continues the paradigm of learning strong image representations without labels using teacher–student distillation, but introduces a simplified and more scalable training recipe that performs well across datasets and architectures. DINOv3 removes the need for complex augmentations or momentum encoders, streamlining the pipeline while...
    Downloads: 11 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    DINOv2

    DINOv2

    PyTorch code and models for the DINOv2 self-supervised learning

    DINOv2 is a self-supervised vision learning framework that produces strong, general-purpose image representations without using human labels. It builds on the DINO idea of student–teacher distillation and adapts it to modern Vision Transformer backbones with a carefully tuned recipe for data augmentation, optimization, and multi-crop training. The core promise is that a single pretrained backbone can transfer well to many downstream tasks—from linear probing on classification to retrieval, detection, and segmentation—often requiring little or no fine-tuning. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Qwen-2.5-VL

    Qwen-2.5-VL

    Qwen2.5-VL is the multimodal large language model series

    Qwen2.5 is a series of large language models developed by the Qwen team at Alibaba Cloud, designed to enhance natural language understanding and generation across multiple languages. The models are available in various sizes, including 0.5B, 1.5B, 3B, 7B, 14B, 32B, and 72B parameters, catering to diverse computational requirements. Trained on a comprehensive dataset of up to 18 trillion tokens, Qwen2.5 models exhibit significant improvements in instruction following, long-text generation...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 7
    DeepSeek-OCR

    DeepSeek-OCR

    Contexts Optical Compression

    DeepSeek-OCR is an open-source optical character recognition solution built as part of the broader DeepSeek AI vision-language ecosystem. It is designed to extract text from images, PDFs, and scanned documents, and integrates with multimodal capabilities that understand layout, context, and visual elements beyond raw character recognition. The system treats OCR not simply as “read the text” but as “understand what the text is doing in the image”—for example distinguishing captions from body...
    Downloads: 15 This Week
    Last Update:
    See Project
  • 8
    Seamless Communication

    Seamless Communication

    Foundational Models for State-of-the-Art Speech and Text Translation

    Seamless Communication is a research project focused on building more integrated, low-latency multimodal communication between humans and AI agents. The motivation is to move beyond “text in, text out” and enable direct, live, multi-turn exchange involving language, gesture, gaze, vision, and modality switching without user friction. The system architecture includes a real-time multimodal signal pipeline for audio, video, and sensor data, a dialog manager that can decide when to act (speak, gesture, point) or query, and a cross-modal reasoning layer that fuses perception with semantic context. The research prototype includes components for visual grounding (understanding when a user references something in view), gesture recognition and synthesis, and turn-taking mechanisms that mirror human conversational timing. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    MAE (Masked Autoencoders)

    MAE (Masked Autoencoders)

    PyTorch implementation of MAE

    MAE (Masked Autoencoders) is a self-supervised learning framework for visual representation learning using masked image modeling. It trains a Vision Transformer (ViT) by randomly masking a high percentage of image patches (typically 75%) and reconstructing the missing content from the remaining visible patches. This forces the model to learn semantic structure and global context without supervision. The encoder processes only the visible patches, while a lightweight decoder reconstructs the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Dun and Bradstreet Connect simplifies the complex burden of data management Icon
    Dun and Bradstreet Connect simplifies the complex burden of data management

    Our self-service data management platform enables your organization to gain a complete and accurate view of your accounts and contacts.

    The amount, speed, and types of data created in today’s world can be overwhelming. With D&B Connect, you can instantly benchmark, enrich, and monitor your data against the Dun & Bradstreet Data Cloud to help ensure your systems of record have trusted data to fuel growth.
    Learn More
  • 10
    OpenVLA 7B

    OpenVLA 7B

    Vision-language-action model for robot control via images and text

    OpenVLA 7B is a multimodal vision-language-action model trained on 970,000 robot manipulation episodes from the Open X-Embodiment dataset. It takes camera images and natural language instructions as input and outputs normalized 7-DoF robot actions, enabling control of multiple robot types across various domains. Built on top of LLaMA-2 and DINOv2/SigLIP visual backbones, it allows both zero-shot inference for known robot setups and parameter-efficient fine-tuning for new domains. The model...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    CLIP-ViT-bigG-14-laion2B-39B-b160k

    CLIP-ViT-bigG-14-laion2B-39B-b160k

    CLIP ViT-bigG/14: Zero-shot image-text model trained on LAION-2B

    CLIP-ViT-bigG-14-laion2B-39B-b160k is a powerful vision-language model trained on the English subset of the LAION-5B dataset using the OpenCLIP framework. Developed by LAION and trained by Mitchell Wortsman on Stability AI’s compute infrastructure, it pairs a ViT-bigG/14 vision transformer with a text encoder to perform contrastive learning on image-text pairs. This model excels at zero-shot image classification, image-to-text and text-to-image retrieval, and can be adapted for tasks such as image captioning or generation guidance. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Ministral 3 3B Base 2512

    Ministral 3 3B Base 2512

    Small 3B-base multimodal model ideal for custom AI on edge hardware

    Ministral 3 3B Base 2512 is the smallest model in the Ministral 3 family, offering a compact yet capable multimodal architecture suited for lightweight AI applications. It combines a 3.4B-parameter language model with a 0.4B vision encoder, enabling both text and image understanding in a tiny footprint. As the base pretrained model, it is not fine-tuned for instructions or reasoning, making it the ideal foundation for custom post-training, domain adaptation, or specialized downstream tasks....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Qwen2.5-VL-3B-Instruct

    Qwen2.5-VL-3B-Instruct

    Qwen2.5-VL-3B-Instruct: Multimodal model for chat, vision & video

    Qwen2.5-VL-3B-Instruct is a 3.75 billion parameter multimodal model by Qwen, designed to handle complex vision-language tasks in both image and video formats. As part of the Qwen2.5 series, it supports image-text-to-text generation with capabilities like chart reading, object localization, and structured data extraction. The model can serve as an intelligent visual agent capable of interacting with digital interfaces and understanding long-form videos by dynamically sampling resolution and frame rate. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    unidepth-v2-vitl14

    unidepth-v2-vitl14

    Metric monocular depth estimation (vision model)

    Estimates absolute (metric) depth from single RGB images, along with camera intrinsics and uncertainty. Designed to generalize across domains (zero-shot) using a self‑prompting camera module and pseudo-spherical prediction space.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next