Showing 34 open source projects for "python framework"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Metaseq

    Metaseq

    Repo for external large-scale work

    Metaseq is a flexible, high-performance framework for training and serving large-scale sequence models, such as language models, translation systems, and instruction-tuned LLMs. Built on top of PyTorch, it provides distributed training, model sharding, mixed-precision computation, and memory-efficient checkpointing to support models with hundreds of billions of parameters. The framework was used internally at Meta to train models like OPT (Open Pre-trained Transformer) and serves as a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    GPT-NeoX

    GPT-NeoX

    Implementation of model parallel autoregressive transformers on GPUs

    This repository records EleutherAI's library for training large-scale language models on GPUs. Our current framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. We aim to make this repo a centralized and accessible place to gather techniques for training large-scale autoregressive language models, and accelerate research into large-scale training. For those looking for a TPU-centric codebase, we...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    ConvNeXt V2

    ConvNeXt V2

    Code release for ConvNeXt V2 model

    ConvNeXt V2 is an evolution of the ConvNeXt architecture that co-designs convolutional networks alongside self-supervised learning. The V2 version introduces a fully convolutional masked autoencoder (FCMAE) framework where parts of the image are masked and the network reconstructs the missing content, marrying convolutional inductive bias with powerful pretraining. A key innovation is a new Global Response Normalization (GRN) layer added to the ConvNeXt backbone, which enhances feature...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    minGPT

    minGPT

    A minimal PyTorch re-implementation of the OpenAI GPT

    minGPT is a minimalist, educational re-implementation of the GPT (Generative Pretrained Transformer) architecture built in PyTorch, designed by Andrej Karpathy to expose the core structure of a transformer-based language model in as few lines of code as possible. It strips away extraneous bells and whistles, aiming to show how a sequence of token indices is fed into a stack of transformer blocks and then decoded into the next token probabilities, with both training and inference supported....
    Downloads: 0 This Week
    Last Update:
    See Project
  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • 5
    MAE (Masked Autoencoders)

    MAE (Masked Autoencoders)

    PyTorch implementation of MAE

    MAE (Masked Autoencoders) is a self-supervised learning framework for visual representation learning using masked image modeling. It trains a Vision Transformer (ViT) by randomly masking a high percentage of image patches (typically 75%) and reconstructing the missing content from the remaining visible patches. This forces the model to learn semantic structure and global context without supervision. The encoder processes only the visible patches, while a lightweight decoder reconstructs the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    MUSE

    MUSE

    A library for Multilingual Unsupervised or Supervised word Embeddings

    MUSE is a framework for learning multilingual word embeddings that live in a shared space, enabling bilingual lexicon induction, cross-lingual retrieval, and zero-shot transfer. It supports both supervised alignment with seed dictionaries and unsupervised alignment that starts without parallel data by using adversarial initialization followed by Procrustes refinement. The code can align pre-trained monolingual embeddings (such as fastText) across dozens of languages and provides standardized...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    DeepSeek-V3.2-Speciale

    DeepSeek-V3.2-Speciale

    High-compute ultra-reasoning model surpassing model surpassing GPT-5

    DeepSeek-V3.2-Speciale is the high-compute, ultra-reasoning variant of DeepSeek-V3.2, designed specifically to push the boundaries of mathematical, logical, and algorithmic intelligence. It builds on the DeepSeek Sparse Attention (DSA) framework, delivering dramatically improved long-context efficiency while preserving full model quality. Unlike the standard version, Speciale is tuned exclusively for deep reasoning and therefore does not support tool-calling, focusing its full capacity on...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    DeepSeek-V3.2

    DeepSeek-V3.2

    High-efficiency reasoning and agentic intelligence model

    DeepSeek-V3.2 is a cutting-edge large language model developed by DeepSeek-AI, focused on achieving high reasoning accuracy and computational efficiency for agentic tasks. It introduces DeepSeek Sparse Attention (DSA), a new attention mechanism that dramatically reduces computational overhead while maintaining strong long-context performance. Built with a scalable reinforcement learning framework, it reaches near-GPT-5 levels of reasoning and outperforms comparable models like DeepSeek-V3.1...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Hunyuan-MT-7B

    Hunyuan-MT-7B

    Tencent’s 36-language state-of-the-art translation model

    Hunyuan-MT-7B is a large-scale multilingual translation model developed by Tencent, designed to deliver state-of-the-art translation quality across 36 languages, including several Chinese ethnic minority languages. It forms part of the Hunyuan Translation Model family, alongside Hunyuan-MT-Chimera, which ensembles outputs for even higher accuracy. Trained with a comprehensive framework spanning pretraining, cross-lingual pretraining, supervised fine-tuning, enhancement, and ensemble...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome