...It combines automated interpretability methods with sparse autoencoders, enabling researchers to analyze how specific neurons, attention heads, and latent features contribute to a model’s outputs. TDB allows users to intervene directly in the forward pass of a model and observe how such interventions change predictions, making it possible to answer questions like why a token was selected or why an attention head focused on a certain input. It automatically identifies and explains the most influential components, highlights activation patterns, and maps relationships across circuits within the model. The tool includes both a React-based neuron viewer for exploring model components and a backend activation server for running inferences and serving data.