Showing 8 open source projects for "stack"

View related business solutions
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • 1
    HeartMuLa

    HeartMuLa

    A Family of Open Sourced Music Foundation Models

    HeartMuLa is the open-source library and reference implementation for the HeartMuLa family of music foundation models, designed to support both music generation and music-related understanding tasks in a cohesive stack. At the center is HeartMuLa, a music language model that generates music conditioned on inputs like lyrics and tags, with multilingual support that broadens the range of lyric-driven use cases. The project also includes HeartCodec, a music codec optimized for high reconstruction fidelity, enabling efficient tokenization and reconstruction workflows that are critical for training and generation pipelines. ...
    Downloads: 41 This Week
    Last Update:
    See Project
  • 2
    Qwen3-TTS

    Qwen3-TTS

    Qwen3-TTS is an open-source series of TTS models

    ...Because it’s part of the broader Qwen ecosystem, it benefits from the model’s understanding of linguistic nuances, enabling more accurate pronunciation, prosody, and contextual delivery than many traditional TTS systems. Developers can customize voice output parameters like speed, pitch, and volume, and combine the TTS stack with other AI components.
    Downloads: 31 This Week
    Last Update:
    See Project
  • 3
    HunyuanWorld-Mirror

    HunyuanWorld-Mirror

    Fast and Universal 3D reconstruction model for versatile tasks

    ...The project sits within a broader family of Hunyuan models that explore world generation and 3D-consistent understanding, and this mirror variant makes the reconstruction stack easier to test. It’s attractive for rapid prototyping of scenes, environment scans, or reference assets when you need repeatable 3D results from ordinary media.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    DeepSeek VL

    DeepSeek VL

    Towards Real-World Vision-Language Understanding

    DeepSeek-VL is DeepSeek’s initial vision-language model that anchors their multimodal stack. It enables understanding and generation across visual and textual modalities—meaning it can process an image + a prompt, answer questions about images, caption, classify, or reason about visuals in context. The model is likely used internally as the visual encoder backbone for agent use cases, to ground perception in downstream tasks (e.g. answering questions about a screenshot).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    FastVLM

    FastVLM

    This repository contains the official implementation of FastVLM

    FastVLM is an efficiency-focused vision-language modeling stack that introduces FastViTHD, a hybrid vision encoder engineered to emit fewer visual tokens and slash encoding time, especially for high-resolution images. Instead of elaborate pruning stages, the design trades off resolution and token count through input scaling, simplifying the pipeline while maintaining strong accuracy. Reported results highlight dramatic speedups in time-to-first-token and competitive quality versus contemporary open VLMs, including comparisons across small and larger variants. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Pearl

    Pearl

    A Production-ready Reinforcement Learning AI Agent Library

    Pearl is a production-ready reinforcement learning and contextual bandit agent library built for real-world sequential decision making. It is organized around modular components—policy learners, replay buffers, exploration strategies, safety modules, and history summarizers—that snap together to form reliable agents with clear boundaries and strong defaults. The library implements classic and modern algorithms across two regimes: contextual bandits (e.g., LinUCB, LinTS, SquareCB, neural...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    minGPT

    minGPT

    A minimal PyTorch re-implementation of the OpenAI GPT

    minGPT is a minimalist, educational re-implementation of the GPT (Generative Pretrained Transformer) architecture built in PyTorch, designed by Andrej Karpathy to expose the core structure of a transformer-based language model in as few lines of code as possible. It strips away extraneous bells and whistles, aiming to show how a sequence of token indices is fed into a stack of transformer blocks and then decoded into the next token probabilities, with both training and inference supported. Because the whole model is around 300 lines of code, users can follow each step—from embedding lookup, positional encodings, multi-head attention, feed-forward layers, to output heads—and thus demystify how GPT-style models work beneath the surface. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Mellum-4b-base

    Mellum-4b-base

    JetBrains’ 4B parameter code model for completions

    ...Built with 4 billion parameters and a LLaMA-style architecture, it was trained on over 4.2 trillion tokens across multiple programming languages, including datasets such as The Stack, StarCoder, and CommitPack. With a context window of 8,192 tokens, it excels at code completion, fill-in-the-middle tasks, and intelligent code suggestions for professional developer tools and IDEs. The model is efficient for both cloud inference with vLLM and local deployment using llama.cpp or Ollama, thanks to its bf16 precision and AMP training. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next