Showing 2 open source projects for "mini"

View related business solutions
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Protenix

    Protenix

    A trainable PyTorch reproduction of AlphaFold 3

    ...Protenix provides a complete pipeline for turning protein sequences (with optional MSA / sequence alignment) or structural inputs (e.g. PDB/CIF) into full 3D atomic-level structure predictions. It supports both “full” models and lightweight variants such as “Protenix-Mini,” offering a trade-off between speed/compute cost and predictive accuracy — making structure prediction accessible even in resource-constrained environments. The project also includes support for constraints (e.g., specifying residue- or atom-level contact constraints, or pocket constraints) to guide predictions toward biologically or experimentally relevant conformations, which enhances its utility for tasks like modeling complexes, ligands, or antibody–antigen interactions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Ling-V2

    Ling-V2

    Ling-V2 is a MoE LLM provided and open-sourced by InclusionAI

    Ling-V2 is an open-source family of Mixture-of-Experts (MoE) large language models developed by the InclusionAI research organization with the goal of combining state-of-the-art performance, efficiency, and openness for next-generation AI applications. It introduces highly sparse architectures where only a fraction of the model’s parameters are activated per input token, enabling models like Ling-mini-2.0 to achieve reasoning and instruction-following capabilities on par with much larger dense models while remaining significantly more computationally efficient. Trained on more than 20 trillion tokens of high-quality data and enhanced through multi-stage supervised fine-tuning and reinforcement learning, Ling-V2’s models demonstrate strong general reasoning, mathematical problem-solving, coding understanding, and knowledge-intensive task performance.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.
Try Free →