Showing 2 open source projects for "interpolation"

View related business solutions
  • Build on Google Cloud with $300 in Free Credit Icon
    Build on Google Cloud with $300 in Free Credit

    New to Google Cloud? Get $300 in free credit to explore Compute Engine, BigQuery, Cloud Run, Vertex AI, and 150+ other products.

    Start your next project with $300 in free Google Cloud credit. Spin up VMs, run containers, query exabytes in BigQuery, or build AI apps with Vertex AI and Gemini. Once your credits are used, keep building with 20+ products with free monthly usage, including Compute Engine, Cloud Storage, GKE, and Cloud Run functions. Sign up to start building right away.
    Start Free Trial
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    Warlock-Studio

    Warlock-Studio

    AI Suite for upscaling, interpolating & restoring images/videos

    v6.0. Warlock-Studio is a Windows application that uses Real-ESRGAN, BSRGAN, IRCNN, GFPGAN, RealESRNet, RealESRAnime and RIFE Artificial Intelligence models to upscale, restore faces, interpolate frames and reduce noise in images and videos. the application supports GPU acceleration (including multi-GPU setups) and offers batch processing for large workloads. It includes drag-and-drop handling for single or multiple files, optional pre-resize functions, and an automatic tiling system...
    Leader badge
    Downloads: 84 This Week
    Last Update:
    See Project
  • 2
    Consistency Models

    Consistency Models

    Official repo for consistency models

    consistency_models is the repository for Consistency Models, a new family of generative models introduced by OpenAI that aim to generate high-quality samples by mapping noise directly into data — circumventing the need for lengthy diffusion chains. It builds on and extends diffusion model frameworks (e.g. based on the guided-diffusion codebase), adding techniques like consistency distillation and consistency training to enable fast, often one-step, sample generation. The repo is implemented...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB