Showing 61 open source projects for "data"

View related business solutions
  • 99.99% Uptime for MySQL and PostgreSQL on Google Cloud Icon
    99.99% Uptime for MySQL and PostgreSQL on Google Cloud

    Enterprise Plus edition delivers sub-second maintenance downtime and 2x read/write performance. Built for critical apps.

    Cloud SQL Enterprise Plus gives you a 99.99% availability SLA with near-zero downtime maintenance—typically under 10 seconds. Get 2x better read/write performance, intelligent data caching, and 35 days of point-in-time recovery. Supports MySQL, PostgreSQL, and SQL Server with built-in vector search for gen AI apps. New customers get $300 in free credit.
    Try Cloud SQL Free
  • Deploy Apps in Seconds with Cloud Run Icon
    Deploy Apps in Seconds with Cloud Run

    Host and run your applications without the need to manage infrastructure. Scales up from and down to zero automatically.

    Cloud Run is the fastest way to deploy containerized apps. Push your code in Go, Python, Node.js, Java, or any language and Cloud Run builds and deploys it automatically. Get fast autoscaling, pay only when your code runs, and skip the infrastructure headaches. Two million requests free per month. And new customers get $300 in free credit.
    Try Cloud Run Free
  • 1
    DeiT (Data-efficient Image Transformers)
    DeiT (Data-efficient Image Transformers) shows that Vision Transformers can be trained competitively on ImageNet-1k without external data by using strong training recipes and knowledge distillation. Its key idea is a specialized distillation strategy—including a learnable “distillation token”—that lets a transformer learn effectively from a CNN or transformer teacher on modest-scale datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Wan2.2

    Wan2.2

    Wan2.2: Open and Advanced Large-Scale Video Generative Model

    ...It introduces a Mixture-of-Experts (MoE) architecture that splits the denoising process across specialized expert models, increasing total model capacity without raising computational costs. Wan2.2 integrates meticulously curated cinematic aesthetic data, enabling precise control over lighting, composition, color tone, and more, for high-quality, customizable video styles. The model is trained on significantly larger datasets than its predecessor, greatly enhancing motion complexity, semantic understanding, and aesthetic diversity. Wan2.2 also open-sources a 5-billion parameter high-compression VAE-based hybrid text-image-to-video (TI2V) model that supports 720P video generation at 24fps on consumer-grade GPUs like the RTX 4090. ...
    Downloads: 158 This Week
    Last Update:
    See Project
  • 3
    SAM 3

    SAM 3

    Code for running inference and finetuning with SAM 3 model

    ...Compared with SAM 2, SAM 3 introduces the ability to exhaustively segment all instances of an open-vocabulary concept specified by a short phrase or exemplars, scaling to a vastly larger set of categories than traditional closed-set models. This capability is grounded in a new data engine that automatically annotated over four million unique concepts, producing a massive open-vocabulary segmentation dataset and enabling the model to achieve 75–80% of human performance on the SA-CO benchmark, which itself spans 270K unique concepts.
    Downloads: 86 This Week
    Last Update:
    See Project
  • 4
    Clay Foundation Model

    Clay Foundation Model

    The Clay Foundation Model - An open source AI model and interface

    The Clay Foundation Model is an open-source AI model and interface designed to provide comprehensive data and insights about Earth. It aims to serve as a foundational tool for environmental monitoring, research, and decision-making by integrating various data sources and offering an accessible platform for analysis.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Go from Data Warehouse to Data and AI platform with BigQuery Icon
    Go from Data Warehouse to Data and AI platform with BigQuery

    Build, train, and run ML models with simple SQL. Automate data prep, analysis, and predictions with built-in AI assistance from Gemini.

    BigQuery is more than a data warehouse—it's an autonomous data-to-AI platform. Use familiar SQL to train ML models, run time-series forecasts, and generate AI-powered insights with native Gemini integration. Built-in agents handle data engineering and data science workflows automatically. Get $300 in free credit, query 1 TB, and store 10 GB free monthly.
    Try BigQuery Free
  • 5
    FinGPT

    FinGPT

    Open-Source Financial Large Language Models

    FinGPT is an open-source, finance-specialized large language model framework that blends the capabilities of general LLMs with real-time financial data feeds, domain-specific knowledge bases, and task-oriented agents to support market analysis, research automation, and decision support. It extends traditional GPT-style models by connecting them to live or historical financial datasets, news APIs, and economic indicators so that outputs are grounded in relevant and recent market conditions rather than generic knowledge alone. ...
    Downloads: 11 This Week
    Last Update:
    See Project
  • 6
    HunyuanWorld-Voyager

    HunyuanWorld-Voyager

    RGBD video generation model conditioned on camera input

    ...At its core, Voyager integrates a world-consistent video diffusion model with an efficient long-range world exploration engine powered by auto-regressive inference. To support training, the team built a scalable data engine that automatically curates large video datasets with camera pose estimation and metric depth prediction. As a result, Voyager delivers state-of-the-art performance on world exploration benchmarks while maintaining photometric, style, and 3D consistency.
    Downloads: 27 This Week
    Last Update:
    See Project
  • 7
    Tongyi DeepResearch

    Tongyi DeepResearch

    Tongyi Deep Research, the Leading Open-source Deep Research Agent

    ...It’s built to act like a research agent: synthesizing, reasoning, retrieving information via the web and documents, and backing its outputs with evidence. The model is about 30.5 billion parameters in size, though at any given token only ~3.3B parameters are active. It uses a mix of synthetic data generation, fine-tuning and reinforcement learning; supports benchmarks like web search, document understanding, question answering, “agentic” tasks; provides inference tools, evaluation scripts, and “web agent” style interfaces. The aim is to enable more autonomous, agentic models that can perform sustained knowledge gathering, reasoning, and synthesis across multiple modalities (web, files, etc.).
    Downloads: 7 This Week
    Last Update:
    See Project
  • 8
    AlphaFold 3

    AlphaFold 3

    AlphaFold 3 inference pipeline

    ...Users can perform local predictions via Docker containers, integrating AlphaFold 3’s inference process with provided JSON input configurations. The software includes flexible options for running both data preprocessing and GPU-accelerated inference, allowing users to adapt to available computational resources.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 9
    Stable Diffusion WebUI Docker

    Stable Diffusion WebUI Docker

    Easy Docker setup for Stable Diffusion with user-friendly UI

    ...Users can choose which UI profile they want to run — for example, full feature AUTOMATIC1111, CPU-only automatic builds, or ComfyUI workflows — and launch them in a consistent, isolated container environment with automatic model and data caching. The project supports mounting data and output directories so generated images and configurations persist outside the container, and it lets developers customize UI behavior through Docker Compose override files.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Build on Google Cloud with $300 in Free Credit Icon
    Build on Google Cloud with $300 in Free Credit

    New to Google Cloud? Get $300 in free credit to explore Compute Engine, BigQuery, Cloud Run, Vertex AI, and 150+ other products.

    Start your next project with $300 in free Google Cloud credit. Spin up VMs, run containers, query exabytes in BigQuery, or build AI apps with Vertex AI and Gemini. Once your credits are used, keep building with 20+ products with free monthly usage, including Compute Engine, Cloud Storage, GKE, and Cloud Run functions. Sign up to start building right away.
    Start Free Trial
  • 10
    DB-GPT

    DB-GPT

    Revolutionizing Database Interactions with Private LLM Technology

    DB-GPT is an experimental open-source project that uses localized GPT large models to interact with your data and environment. With this solution, you can be assured that there is no risk of data leakage, and your data is 100% private and secure.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    NVIDIA Isaac GR00T

    NVIDIA Isaac GR00T

    NVIDIA Isaac GR00T N1.5 is the world's first open foundation model

    ...It accepts multimodal inputs—such as language and images—and uses a diffusion transformer architecture built upon vision-language encoders, enabling adaptive robot behaviors across diverse environments. It is designed to be customizable via post-training with real or synthetic data. The vision-language model remains frozen during both pretraining and finetuning, preserving language understanding and improving generalization. Streamlined MLP connection between vision encoder and LLM with added layer normalization.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    DeepSeek-V3.2-Exp

    DeepSeek-V3.2-Exp

    An experimental version of DeepSeek model

    DeepSeek-V3.2-Exp is an experimental release of the DeepSeek model family, intended as a stepping stone toward the next generation architecture. The key innovation in this version is DeepSeek Sparse Attention (DSA), a sparse attention mechanism that aims to optimize training and inference efficiency in long-context settings without degrading output quality. According to the authors, they aligned the training setup of V3.2-Exp with V3.1-Terminus so that benchmark results remain largely...
    Downloads: 26 This Week
    Last Update:
    See Project
  • 13
    Step-Audio

    Step-Audio

    Open-source framework for intelligent speech interaction

    ...Through its architecture, Step-Audio supports multilingual interaction, dialects, emotional tones (joy, sadness, etc.), and even more creative speech styles (like rap or singing), while allowing dynamic control over speech characteristics. It also provides a “generative data engine,” which can produce synthetic speech data (cloning voices, varying style) to support TTS training.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    NVIDIA Earth2Studio

    NVIDIA Earth2Studio

    Open-source deep-learning framework

    ...Users can extend Earth2Studio with optional model packs, advanced data interfaces, statistical operators, and backend integrations that support flexible workflows from simple tests to large-scale operational inference.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    GLM-4

    GLM-4

    GLM-4 series: Open Multilingual Multimodal Chat LMs

    GLM-4 is a family of open models from ZhipuAI that spans base, chat, and reasoning variants at both 32B and 9B scales, with long-context support and practical local-deployment options. The GLM-4-32B-0414 models are trained on ~15T high-quality data (including substantial synthetic reasoning data), then post-trained with preference alignment, rejection sampling, and reinforcement learning to improve instruction following, coding, function calling, and agent-style behaviors. The GLM-Z1-32B-0414 line adds deeper mathematical, coding, and logical reasoning via extended reinforcement learning and pairwise ranking feedback, while GLM-Z1-Rumination-32B-0414 introduces a “rumination” mode that performs longer, tool-using deep research for complex, open-ended tasks. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 16
    MedicalGPT

    MedicalGPT

    MedicalGPT: Training Your Own Medical GPT Model with ChatGPT Training

    MedicalGPT training medical GPT model with ChatGPT training pipeline, implementation of Pretraining, Supervised Finetuning, Reward Modeling and Reinforcement Learning. MedicalGPT trains large medical models, including secondary pre-training, supervised fine-tuning, reward modeling, and reinforcement learning training.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    DeepSeek-OCR

    DeepSeek-OCR

    Contexts Optical Compression

    DeepSeek-OCR is an open-source optical character recognition solution built as part of the broader DeepSeek AI vision-language ecosystem. It is designed to extract text from images, PDFs, and scanned documents, and integrates with multimodal capabilities that understand layout, context, and visual elements beyond raw character recognition. The system treats OCR not simply as “read the text” but as “understand what the text is doing in the image”—for example distinguishing captions from body...
    Downloads: 12 This Week
    Last Update:
    See Project
  • 18
    Granite TSFM

    Granite TSFM

    Foundation Models for Time Series

    granite-tsfm collects public notebooks, utilities, and serving components for IBM’s Time Series Foundation Models (TSFM), giving practitioners a practical path from data prep to inference for forecasting and anomaly-detection use cases. The repository focuses on end-to-end workflows: loading data, building datasets, fine-tuning forecasters, running evaluations, and serving models. It documents the currently supported Python versions and points users to where the core TSFM models are hosted and how to wire up service components. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    DINOv3

    DINOv3

    Reference PyTorch implementation and models for DINOv3

    DINOv3 is the third-generation iteration of Meta’s self-supervised visual representation learning framework, building upon the ideas from DINO and DINOv2. It continues the paradigm of learning strong image representations without labels using teacher–student distillation, but introduces a simplified and more scalable training recipe that performs well across datasets and architectures. DINOv3 removes the need for complex augmentations or momentum encoders, streamlining the pipeline while...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 20
    Google DeepMind GraphCast and GenCast

    Google DeepMind GraphCast and GenCast

    Global weather forecasting model using graph neural networks and JAX

    ...GraphCast is designed to perform high-resolution atmospheric simulations using the ERA5 dataset from ECMWF, while GenCast extends the approach with diffusion-based ensemble forecasting for probabilistic weather prediction. Both models are built on JAX and integrate advanced neural architectures capable of learning from multi-scale geophysical data represented on icosahedral meshes. The package includes pretrained model weights, normalization statistics, and demonstration notebooks that allow users to replicate and fine-tune weather forecasting experiments in Colab or on Google Cloud TPUs and GPUs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Large Concept Model

    Large Concept Model

    Language modeling in a sentence representation space

    ...It organizes training around concepts (rather than just raw labels), encouraging models to understand attributes, relations, and compositional structure that transfer across tasks. The repository provides training loops, data tooling, and evaluation routines to learn and probe these concept embeddings, typically from large image–text or weakly supervised corpora. It includes utilities to build concept vocabularies, map supervision signals to those vocabularies, and measure zero-shot or few-shot generalization. Probing tools help diagnose what the model knows—e.g., attribute recognition, relation understanding, or compositionality—so you can iterate on data and objectives. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    CO3D (Common Objects in 3D)

    CO3D (Common Objects in 3D)

    Tooling for the Common Objects In 3D dataset

    CO3Dv2 (Common Objects in 3D, version 2) is a large-scale 3D computer vision dataset and toolkit from Facebook Research designed for training and evaluating category-level 3D reconstruction methods using real-world data. It builds upon the original CO3Dv1 dataset, expanding both scale and quality—featuring 2× more sequences and 4× more frames, with improved image fidelity, more accurate segmentation masks, and enhanced annotations for object-centric 3D reconstruction. CO3Dv2 enables research in multi-view 3D reconstruction, novel view synthesis, and geometry-aware representation learning. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    ComfyUI-LTXVideo

    ComfyUI-LTXVideo

    LTX-Video Support for ComfyUI

    ComfyUI-LTXVideo is a bridge between ComfyUI’s node-based generative workflow environment and the LTX-Video multimedia processing framework, enabling creators to orchestrate complex video tasks within a visual graph paradigm. Instead of writing code to apply effects, transitions, edits, and data flows, users can assemble nodes that represent video inputs, transformations, and outputs, letting them prototype and automate video production pipelines visually. This integration empowers non-programmers and rapid-iteration teams to harness the performance of LTX-Video while maintaining the clarity and flexibility of a dataflow graph model. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 24
    FramePack

    FramePack

    Lets make video diffusion practical

    FramePack explores compact representations for sequences of image frames, targeting tasks where many near-duplicate frames carry redundant information. The idea is to “pack” frames by detecting shared structure and storing differences efficiently, which can accelerate training or inference on video-like data. By reducing I/O and memory bandwidth, datasets become lighter to load while models still see the essential temporal variation. The repository demonstrates both packing and unpacking steps, making it straightforward to integrate into preprocessing pipelines. It’s useful for diffusion and generative models that learn from sequential image datasets, as well as classical pipelines that batch many related frames. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 25
    HY-Motion 1.0

    HY-Motion 1.0

    HY-Motion model for 3D character animation generation

    ...Built on advanced deep learning architectures that combine Diffusion Transformer (DiT) and flow matching techniques, HY-Motion scales these approaches to the billion-parameter level, resulting in strong instruction-following capabilities and richer motion outputs compared to existing open-source models. The training strategy for the HY-Motion series includes extensive pre-training on thousands of hours of varied motion data, fine-tuning on curated high-quality datasets, and reinforcement learning with human feedback, which improves both the plausibility and adaptability of generated motion sequences.
    Downloads: 6 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next
MongoDB Logo MongoDB