Showing 2 open source projects for "cleaner"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    GLM-4.7

    GLM-4.7

    Advanced language and coding AI model

    ...The model introduces stronger “thinking before acting” behavior, improving stability and accuracy in complex agent frameworks like Claude Code, Cline, and Roo Code. GLM-4.7 also advances “vibe coding,” producing cleaner, more modern UIs, better-structured webpages, and visually improved slide layouts. Its tool-use capabilities are substantially enhanced, with notable improvements in browsing, search, and tool-integrated reasoning tasks. Overall, GLM-4.7 shows broad performance upgrades across coding, reasoning, chat, creative writing, and role-play scenarios.
    Downloads: 268 This Week
    Last Update:
    See Project
  • 2
    DiT (Diffusion Transformers)

    DiT (Diffusion Transformers)

    Official PyTorch Implementation of "Scalable Diffusion Models"

    ...Unlike CNN-based diffusion models, DiT represents the diffusion process in the latent space and processes image tokens through transformer blocks with learned positional encodings, offering scalability and superior sample quality. The model architecture parallels large language models but for image tokens—each block refines noisy latent representations toward cleaner outputs through iterative denoising steps. DiT achieves strong results on benchmarks like ImageNet and LSUN while being architecturally simple and highly modular. It supports variable resolution, conditioning on class or text embeddings, and integration with latent autoencoders (like those used in Stable Diffusion).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next