Showing 17 open source projects for "artificial intelligent agent python"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 1
    Claude Code SDK Python

    Claude Code SDK Python

    Python SDK for Claude Agent

    claude-code-sdk-python is the Python SDK for Claude Code, Anthropic’s agentic coding system. It provides abstractions to easily query Claude Code (with streaming support) and conduct interactive sessions. The SDK includes core client classes, asynchronous query functions, and support for custom tools and hooks within Claude sessions. It is designed to integrate with local Python workflows and allow developers to embed Claude Code capabilities directly in their applications or scripts. The...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    GLM-4.5

    GLM-4.5

    GLM-4.5: Open-source LLM for intelligent agents by Z.ai

    GLM-4.5 is a cutting-edge open-source large language model designed by Z.ai for intelligent agent applications. The flagship GLM-4.5 model has 355 billion total parameters with 32 billion active parameters, while the compact GLM-4.5-Air version offers 106 billion total parameters and 12 billion active parameters. Both models unify reasoning, coding, and intelligent agent capabilities, providing two modes: a thinking mode for complex reasoning and tool usage, and a non-thinking mode for...
    Downloads: 227 This Week
    Last Update:
    See Project
  • 3
    DB-GPT

    DB-GPT

    Revolutionizing Database Interactions with Private LLM Technology

    DB-GPT is an experimental open-source project that uses localized GPT large models to interact with your data and environment. With this solution, you can be assured that there is no risk of data leakage, and your data is 100% private and secure.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    GLM-4.6

    GLM-4.6

    Agentic, Reasoning, and Coding (ARC) foundation models

    GLM-4.6 is the latest iteration of Zhipu AI’s foundation model, delivering significant advancements over GLM-4.5. It introduces an extended 200K token context window, enabling more sophisticated long-context reasoning and agentic workflows. The model achieves superior coding performance, excelling in benchmarks and practical coding assistants such as Claude Code, Cline, Roo Code, and Kilo Code. Its reasoning capabilities have been strengthened, including improved tool usage during inference...
    Downloads: 306 This Week
    Last Update:
    See Project
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 5
    Tongyi DeepResearch

    Tongyi DeepResearch

    Tongyi Deep Research, the Leading Open-source Deep Research Agent

    DeepResearch (Tongyi DeepResearch) is an open-source “deep research agent” developed by Alibaba’s Tongyi Lab designed for long-horizon, information-seeking tasks. It’s built to act like a research agent: synthesizing, reasoning, retrieving information via the web and documents, and backing its outputs with evidence. The model is about 30.5 billion parameters in size, though at any given token only ~3.3B parameters are active. It uses a mix of synthetic data generation, fine-tuning and...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 6
    PokeeResearch-7B

    PokeeResearch-7B

    Pokee Deep Research Model Open Source Repo

    PokeeResearchOSS provides an open-source, agentic “deep research” model centered on a 7B backbone that can browse, read, and synthesize current information from the web. Instead of relying only on static training data, the agent performs searches, visits pages, and extracts evidence before forming answers to complex queries. It is built to operate end-to-end: planning a research strategy, gathering sources, reasoning over conflicting claims, and writing a grounded response. The repository...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    InstantCharacter

    InstantCharacter

    Personalize Any Characters with a Scalable Diffusion Transformer

    InstantCharacter is a tuning-free diffusion transformer framework created by Tencent Hunyuan / InstantX team, which enables generating images of a specific character (subject) from a single reference image, preserving identity and character features. Uses adapters, so full fine-tuning of the base model is not required. Demo scripts and pipeline API (via infer_demo.py, pipeline.py) included. It works by adapting a base image generation model with a lightweight adapter so that you can produce...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Pearl

    Pearl

    A Production-ready Reinforcement Learning AI Agent Library

    Pearl is a production-ready reinforcement learning and contextual bandit agent library built for real-world sequential decision making. It is organized around modular components—policy learners, replay buffers, exploration strategies, safety modules, and history summarizers—that snap together to form reliable agents with clear boundaries and strong defaults. The library implements classic and modern algorithms across two regimes: contextual bandits (e.g., LinUCB, LinTS, SquareCB, neural...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    DeepSeek VL

    DeepSeek VL

    Towards Real-World Vision-Language Understanding

    DeepSeek-VL is DeepSeek’s initial vision-language model that anchors their multimodal stack. It enables understanding and generation across visual and textual modalities—meaning it can process an image + a prompt, answer questions about images, caption, classify, or reason about visuals in context. The model is likely used internally as the visual encoder backbone for agent use cases, to ground perception in downstream tasks (e.g. answering questions about a screenshot). The repository...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    DeepSeek VL2

    DeepSeek VL2

    Mixture-of-Experts Vision-Language Models for Advanced Multimodal

    DeepSeek-VL2 is DeepSeek’s vision + language multimodal model—essentially the next-gen successor to their first vision-language models. It combines image and text inputs into a unified embedding / reasoning space so that you can query with text and image jointly (e.g. “What’s going on in this scene?” or “Generate a caption appropriate to context”). The model supports both image understanding (vision tasks) and multimodal reasoning, and is likely used as a component in agent systems to...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    GLM-V

    GLM-V

    GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning

    GLM-V is an open-source vision-language model (VLM) series from ZhipuAI that extends the GLM foundation models into multimodal reasoning and perception. The repository provides both GLM-4.5V and GLM-4.1V models, designed to advance beyond basic perception toward higher-level reasoning, long-context understanding, and agent-based applications. GLM-4.5V builds on the flagship GLM-4.5-Air foundation (106B parameters, 12B active), achieving state-of-the-art results on 42 benchmarks across image,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    CogVLM

    CogVLM

    A state-of-the-art open visual language model

    CogVLM is an open-source visual–language model suite—and its GUI-oriented sibling CogAgent—aimed at image understanding, grounding, and multi-turn dialogue, with optional agent actions on real UI screenshots. The flagship CogVLM-17B combines ~10B visual parameters with ~7B language parameters and supports 490×490 inputs; CogAgent-18B extends this to 1120×1120 and adds plan/next-action outputs plus grounded operation coordinates for GUI tasks. The repo provides multiple ways to run models...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    GLM-4

    GLM-4

    GLM-4 series: Open Multilingual Multimodal Chat LMs

    GLM-4 is a family of open models from ZhipuAI that spans base, chat, and reasoning variants at both 32B and 9B scales, with long-context support and practical local-deployment options. The GLM-4-32B-0414 models are trained on ~15T high-quality data (including substantial synthetic reasoning data), then post-trained with preference alignment, rejection sampling, and reinforcement learning to improve instruction following, coding, function calling, and agent-style behaviors. The...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Warlock-Studio

    Warlock-Studio

    Suite with Real-ESRGAN, BSRGAN , IRCNN, GFPGAN & RIFE. v4.3

    Version 4.3 – Summary Fixed missing audio in generated videos. Corrected dark output issue in GFPGAN face restoration. Improved overall stability and synchronization. See CHANGELOG.md on GitHub for full details.
    Leader badge
    Downloads: 31 This Week
    Last Update:
    See Project
  • 15
    Video Pre-Training

    Video Pre-Training

    Learning to Act by Watching Unlabeled Online Videos

    The Video PreTraining (VPT) repository provides code and model artifacts for a project where agents learn to act by watching human gameplay videos—specifically, gameplay of Minecraft—using behavioral cloning. The idea is to learn general priors of control from large-scale, unlabeled video data, and then optionally fine-tune those priors for more goal-directed behavior via environment interaction. The repository contains demonstration models of different widths, fine-tuned variants (e.g. for...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Multi-Agent Emergence Environments

    Multi-Agent Emergence Environments

    Environment generation code for the paper "Emergent Tool Use"

    multi-agent-emergence-environments is an open source research environment framework developed by OpenAI for the study of emergent behaviors in multi-agent systems. It was designed for the experiments described in the paper and blog post “Emergent Tool Use from Multi-Agent Autocurricula”, which investigated how complex cooperative and competitive behaviors can evolve through self-play. The repository provides environment generation code that builds on the mujoco-worldgen package, enabling...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Mellum-4b-base

    Mellum-4b-base

    JetBrains’ 4B parameter code model for completions

    Mellum-4b-base is JetBrains’ first open-source large language model designed and optimized for code-related tasks. Built with 4 billion parameters and a LLaMA-style architecture, it was trained on over 4.2 trillion tokens across multiple programming languages, including datasets such as The Stack, StarCoder, and CommitPack. With a context window of 8,192 tokens, it excels at code completion, fill-in-the-middle tasks, and intelligent code suggestions for professional developer tools and IDEs....
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next