Showing 177 open source projects for "open source invoice"

View related business solutions
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • Run applications fast and securely in a fully managed environment Icon
    Run applications fast and securely in a fully managed environment

    Cloud Run is a fully-managed compute platform that lets you run your code in a container directly on top of scalable infrastructure.

    Run frontend and backend services, batch jobs, deploy websites and applications, and queue processing workloads without the need to manage infrastructure.
    Try for free
  • 1
    Step1X-3D

    Step1X-3D

    High-Fidelity and Controllable Generation of Textured 3D Assets

    Step1X-3D is an open-source framework for generating high-fidelity textured 3D assets from scratch — both their geometry and surface textures — using modern generative AI techniques. It combines a hybrid architecture: a geometry generation stage using a VAE-DiT model to output a watertight 3D representation (e.g. TSDF surface), and a texture synthesis stage that conditions on geometry and optionally reference input (or prompts) to produce view-consistent textures using a diffusion-based texture module. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Step-Audio 2

    Step-Audio 2

    Multi-modal large language model designed for audio understanding

    Step-Audio2 is an advanced, end-to-end multimodal large language model designed for high-fidelity audio understanding and natural speech conversation: unlike many pipelines that separate speech recognition, processing, and synthesis, Step-Audio2 processes raw audio, reasons about semantic and paralinguistic content (like emotion, speaker characteristics, non-verbal cues), and can generate contextually appropriate responses — including potentially generating or transforming audio output. It...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Gemma in PyTorch

    Gemma in PyTorch

    The official PyTorch implementation of Google's Gemma models

    gemma_pytorch provides the official PyTorch reference for running and fine-tuning Google’s Gemma family of open models. It includes model definitions, configuration files, and loading utilities for multiple parameter scales, enabling quick evaluation and downstream adaptation. The repository demonstrates text generation pipelines, tokenizer setup, quantization paths, and adapters for low-rank or parameter-efficient fine-tuning. Example notebooks walk through instruction tuning and evaluation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    GLM-4-Voice

    GLM-4-Voice

    GLM-4-Voice | End-to-End Chinese-English Conversational Model

    GLM-4-Voice is an open-source speech-enabled model from ZhipuAI, extending the GLM-4 family into the audio domain. It integrates advanced voice recognition and generation with the multimodal reasoning capabilities of GLM-4, enabling smooth natural interaction via spoken input and output. The model supports real-time speech-to-text transcription, spoken dialogue understanding, and text-to-speech synthesis, making it suitable for conversational AI, virtual assistants, and accessibility applications. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 5
    Perception Models

    Perception Models

    State-of-the-art Image & Video CLIP, Multimodal Large Language Models

    Perception Models is a state-of-the-art framework developed by Facebook Research for advanced image and video perception tasks. It introduces two primary components: the Perception Encoder (PE) for visual feature extraction and the Perception Language Model (PLM) for multimodal decoding and reasoning. The PE module is a family of vision encoders designed to excel in image and video understanding, surpassing models like SigLIP2, InternVideo2, and DINOv2 across multiple benchmarks. Meanwhile,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    CogVLM

    CogVLM

    A state-of-the-art open visual language model

    CogVLM is an open-source visual–language model suite—and its GUI-oriented sibling CogAgent—aimed at image understanding, grounding, and multi-turn dialogue, with optional agent actions on real UI screenshots. The flagship CogVLM-17B combines ~10B visual parameters with ~7B language parameters and supports 490×490 inputs; CogAgent-18B extends this to 1120×1120 and adds plan/next-action outputs plus grounded operation coordinates for GUI tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Step-Audio-EditX

    Step-Audio-EditX

    LLM-based Reinforcement Learning audio edit model

    Step-Audio-EditX is an open-source, 3 billion-parameter audio model from StepFun AI designed to make expressive and precise editing of speech and audio as easy as text editing. Rather than treating audio editing as low-level waveform manipulation, this model converts speech into a sequence of discrete “audio tokens” (via a dual-codebook tokenizer) — combining a linguistic token stream and a semantic (prosody/emotion/style) token stream — thereby abstracting audio editing into high-level token operations. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Qwen2.5-Math

    Qwen2.5-Math

    A series of math-specific large language models of our Qwen2 series

    ...Unlike its predecessor Qwen2-Math, Qwen2.5-Math supports both Chain-of-Thought (CoT) reasoning and Tool-Integrated Reasoning (TIR) for solving math problems, and works in both Chinese and English. It is optimized for solving mathematical benchmarks and exams; the 72B-Instruct model achieves state-of-the-art results among open source models on many English and Chinese math tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Oasis

    Oasis

    Inference script for Oasis 500M

    Open-Oasis provides inference code and released weights for Oasis 500M, an interactive world model that generates gameplay frames conditioned on user keyboard input. Instead of rendering a pre-built game world, the system produces the next visual state via a diffusion-transformer approach, effectively “imagining” the world response to your actions in real time. The project focuses on enabling action-conditional frame generation so developers can experiment with interactive, model-generated...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Powerful Website Security | Continuous Web Threat Platform Icon
    Powerful Website Security | Continuous Web Threat Platform

    Continuously detect, prioritize, and validate web threats to quickly mitigate security, privacy, and compliance risks.

    Reflectiz is a comprehensive web exposure management platform that helps organizations proactively identify, monitor, and mitigate security, privacy, and compliance risks across their online environments. Designed to address the growing complexity of modern websites, Reflectiz provides full visibility and control over first, third, and even fourth-party components, such as scripts, trackers, and open-source libraries that often evade traditional security tools.
    Learn More
  • 10
    MiniMax-M1

    MiniMax-M1

    Open-weight, large-scale hybrid-attention reasoning model

    MiniMax-M1 is presented as the world’s first open-weight, large-scale hybrid-attention reasoning model, designed to push the frontier of long-context, tool-using, and deeply “thinking” language models. It is built on the MiniMax-Text-01 foundation and keeps the same massive parameter budget, but reworks the attention and training setup for better reasoning and test-time compute scaling. Architecturally, it combines Mixture-of-Experts layers with lightning attention, enabling the model to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    VisualGLM-6B

    VisualGLM-6B

    Chinese and English multimodal conversational language model

    VisualGLM-6B is an open-source multimodal conversational language model developed by ZhipuAI that supports both images and text in Chinese and English. It builds on the ChatGLM-6B backbone, with 6.2 billion language parameters, and incorporates a BLIP2-Qformer visual module to connect vision and language. In total, the model has 7.8 billion parameters. Trained on a large bilingual dataset — including 30 million high-quality Chinese image-text pairs from CogView and 300 million English pairs — VisualGLM-6B is designed for image understanding, description, and question answering. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Ring

    Ring

    Ring is a reasoning MoE LLM provided and open-sourced by InclusionAI

    Ring is a reasoning Mixture-of-Experts (MoE) large language model (LLM) developed by inclusionAI. It is built from or derived from Ling. Its design emphasizes reasoning, efficiency, and modular expert activation. In its “flash” variant (Ring-flash-2.0), it optimizes inference by activating only a subset of experts. It applies reinforcement learning/reasoning optimization techniques. Its architectures and training approaches are tuned to enable efficient and capable reasoning performance....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Sapiens

    Sapiens

    High-resolution models for human tasks

    Sapiens is a research framework from Meta AI focused on embodied intelligence and human-like multimodal learning, aiming to train agents that can perceive, reason, and act in complex environments. It integrates sensory inputs such as vision, audio, and proprioception into a unified learning architecture that allows agents to understand and adapt to their surroundings dynamically. The project emphasizes long-horizon reasoning and cross-modal grounding—connecting language, perception, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    CLIP

    CLIP

    CLIP, Predict the most relevant text snippet given an image

    CLIP (Contrastive Language-Image Pretraining) is a neural model that links images and text in a shared embedding space, allowing zero-shot image classification, similarity search, and multimodal alignment. It was trained on large sets of (image, caption) pairs using a contrastive objective: images and their matching text are pulled together in embedding space, while mismatches are pushed apart. Once trained, you can give it any text labels and ask it to pick which label best matches a given...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    GLM-4.6V

    GLM-4.6V

    GLM-4.6V/4.5V/4.1V-Thinking, towards versatile multimodal reasoning

    GLM-4.6V represents the latest generation of the GLM-V family and marks a major step forward in multimodal AI by combining advanced vision-language understanding with native “tool-call” capabilities, long-context reasoning, and strong generalization across domains. Unlike many vision-language models that treat images and text separately or require intermediate conversions, GLM-4.6V allows inputs such as images, screenshots or document pages directly as part of its reasoning pipeline — and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    4M

    4M

    4M: Massively Multimodal Masked Modeling

    4M is a training framework for “any-to-any” vision foundation models that uses tokenization and masking to scale across many modalities and tasks. The same model family can classify, segment, detect, caption, and even generate images, with a single interface for both discriminative and generative use. The repository releases code and models for multiple variants (e.g., 4M-7 and 4M-21), emphasizing transfer to unseen tasks and modalities. Training/inference configs and issues discuss things...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    fairseq2

    fairseq2

    FAIR Sequence Modeling Toolkit 2

    fairseq2 is a modern, modular sequence modeling framework developed by Meta AI Research as a complete redesign of the original fairseq library. Built from the ground up for scalability, composability, and research flexibility, fairseq2 supports a broad range of language, speech, and multimodal content generation tasks, including instruction fine-tuning, reinforcement learning from human feedback (RLHF), and large-scale multilingual modeling. Unlike the original fairseq—which evolved into a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    DeiT (Data-efficient Image Transformers)
    DeiT (Data-efficient Image Transformers) shows that Vision Transformers can be trained competitively on ImageNet-1k without external data by using strong training recipes and knowledge distillation. Its key idea is a specialized distillation strategy—including a learnable “distillation token”—that lets a transformer learn effectively from a CNN or transformer teacher on modest-scale datasets. The project provides compact ViT variants (Tiny/Small/Base) that achieve excellent...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Qwen2-Audio

    Qwen2-Audio

    Repo of Qwen2-Audio chat & pretrained large audio language model

    Qwen2-Audio is a large audio-language model by Alibaba Cloud, part of the Qwen series. It is trained to accept various audio signal inputs (including speech, sounds, etc.) and perform both voice chat and audio analysis, producing textual responses. It supports two major modes: Voice Chat (interactive voice only input) and Audio Analysis (audio + text instructions), with both base and instruction-tuned models. It is evaluated on many benchmarks (speech recognition, translation, sound...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Chinese-LLaMA-Alpaca 2

    Chinese-LLaMA-Alpaca 2

    Chinese LLaMA-2 & Alpaca-2 Large Model Phase II Project

    This project is developed based on the commercially available large model Llama-2 released by Meta. It is the second phase of the Chinese LLaMA&Alpaca large model project. The Chinese LLaMA-2 base model and the Alpaca-2 instruction fine-tuning large model are open-sourced. These models expand and optimize the Chinese vocabulary on the basis of the original Llama-2, use large-scale Chinese data for incremental pre-training, and further improve the basic semantics and command understanding of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Stable Diffusion WebUI Forge

    Stable Diffusion WebUI Forge

    Stable Diffusion WebUI Forge is a platform on top of Stable Diffusion

    Stable Diffusion WebUI Forge is a performance- and feature-oriented fork of the popular AUTOMATIC1111 interface that experiments with new backends, memory optimizations, and UX improvements. It targets heavy users and researchers who push large models, control nets, and high-resolution pipelines where default settings can become bottlenecks. The fork typically introduces toggles for scheduler behavior, attention implementations, caching, and precision modes to reach better speed or quality...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Tracking Any Point (TAP)

    Tracking Any Point (TAP)

    DeepMind model for tracking arbitrary points across videos & robotics

    TAPNet is the official Google DeepMind repository for Tracking Any Point (TAP), bundling datasets, models, benchmarks, and demos for precise point tracking in videos. The project includes the TAP-Vid and TAPVid-3D benchmarks, which evaluate long-range tracking of arbitrary points in 2D and 3D across diverse real and synthetic videos. Its flagship models—TAPIR, BootsTAPIR, and the latest TAPNext—use matching plus temporal refinement or next-token style propagation to achieve state-of-the-art...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Mesh R-CNN

    Mesh R-CNN

    code for Mesh R-CNN, ICCV 2019

    Mesh R-CNN is a 3D reconstruction and object understanding framework developed by Facebook Research that extends Mask R-CNN into the 3D domain. Built on top of Detectron2 and PyTorch3D, Mesh R-CNN enables end-to-end 3D mesh prediction directly from single RGB images. The model learns to detect, segment, and reconstruct detailed 3D mesh representations of objects in natural images, bridging the gap between 2D perception and 3D understanding. Unlike voxel-based or point-based approaches, Mesh...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Large Concept Model

    Large Concept Model

    Language modeling in a sentence representation space

    Large Concept Model is a research codebase centered on concept-centric representation learning at scale, aiming to capture shared structure across many categories and modalities. It organizes training around concepts (rather than just raw labels), encouraging models to understand attributes, relations, and compositional structure that transfer across tasks. The repository provides training loops, data tooling, and evaluation routines to learn and probe these concept embeddings, typically...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Claude Code Security Review

    Claude Code Security Review

    An AI-powered security review GitHub Action using Claude

    The claude-code-security-review repository implements a GitHub Action that uses Claude (via the Anthropic API) to perform semantic security audits of code changes in pull requests. Rather than relying purely on pattern matching or static analysis, this action feeds diffs and surrounding context to Claude to reason about potential vulnerabilities (e.g. injection, misconfigurations, secrets exposure, etc). When a PR is opened, the action analyzes only the changed files (diff-aware scanning),...
    Downloads: 0 This Week
    Last Update:
    See Project