Showing 162 open source projects for "compiler python linux"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 1
    Tracking Any Point (TAP)

    Tracking Any Point (TAP)

    DeepMind model for tracking arbitrary points across videos & robotics

    TAPNet is the official Google DeepMind repository for Tracking Any Point (TAP), bundling datasets, models, benchmarks, and demos for precise point tracking in videos. The project includes the TAP-Vid and TAPVid-3D benchmarks, which evaluate long-range tracking of arbitrary points in 2D and 3D across diverse real and synthetic videos. Its flagship models—TAPIR, BootsTAPIR, and the latest TAPNext—use matching plus temporal refinement or next-token style propagation to achieve state-of-the-art...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    MobileCLIP

    MobileCLIP

    Implementation of "MobileCLIP" CVPR 2024

    MobileCLIP is a family of efficient image-text embedding models designed for real-time, on-device retrieval and zero-shot classification. The repo provides training, inference, and evaluation code for MobileCLIP models trained on DataCompDR, and for newer MobileCLIP2 models trained on DFNDR. It includes an iOS demo app and Core ML artifacts to showcase practical, offline photo search and classification on iPhone-class hardware. Project notes highlight latency/accuracy trade-offs, with...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    4M

    4M

    4M: Massively Multimodal Masked Modeling

    4M is a training framework for “any-to-any” vision foundation models that uses tokenization and masking to scale across many modalities and tasks. The same model family can classify, segment, detect, caption, and even generate images, with a single interface for both discriminative and generative use. The repository releases code and models for multiple variants (e.g., 4M-7 and 4M-21), emphasizing transfer to unseen tasks and modalities. Training/inference configs and issues discuss things...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    FastVLM

    FastVLM

    This repository contains the official implementation of FastVLM

    FastVLM is an efficiency-focused vision-language modeling stack that introduces FastViTHD, a hybrid vision encoder engineered to emit fewer visual tokens and slash encoding time, especially for high-resolution images. Instead of elaborate pruning stages, the design trades off resolution and token count through input scaling, simplifying the pipeline while maintaining strong accuracy. Reported results highlight dramatic speedups in time-to-first-token and competitive quality versus...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    VMZ (Video Model Zoo)

    VMZ (Video Model Zoo)

    VMZ: Model Zoo for Video Modeling

    The codebase was designed to help researchers and practitioners quickly reproduce FAIR’s results and leverage robust pre-trained backbones for downstream tasks. It also integrates Gradient Blending, an audio-visual modeling method that fuses modalities effectively (available in the Caffe2 implementation). Although VMZ is now archived and no longer actively maintained, it remains a valuable reference for understanding early large-scale video model training, transfer learning, and multimodal...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Watermark Anything

    Watermark Anything

    Official implementation of Watermark Anything with Localized Messages

    Watermark Anything (WAM) is an advanced deep learning framework for embedding and detecting localized watermarks in digital images. Developed by Facebook Research, it provides a robust, flexible system that allows users to insert one or multiple watermarks within selected image regions while maintaining visual quality and recoverability. Unlike traditional watermarking methods that rely on uniform embedding, WAM supports spatially localized watermarks, enabling targeted protection of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Mesh R-CNN

    Mesh R-CNN

    code for Mesh R-CNN, ICCV 2019

    Mesh R-CNN is a 3D reconstruction and object understanding framework developed by Facebook Research that extends Mask R-CNN into the 3D domain. Built on top of Detectron2 and PyTorch3D, Mesh R-CNN enables end-to-end 3D mesh prediction directly from single RGB images. The model learns to detect, segment, and reconstruct detailed 3D mesh representations of objects in natural images, bridging the gap between 2D perception and 3D understanding. Unlike voxel-based or point-based approaches, Mesh...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Perception Models

    Perception Models

    State-of-the-art Image & Video CLIP, Multimodal Large Language Models

    Perception Models is a state-of-the-art framework developed by Facebook Research for advanced image and video perception tasks. It introduces two primary components: the Perception Encoder (PE) for visual feature extraction and the Perception Language Model (PLM) for multimodal decoding and reasoning. The PE module is a family of vision encoders designed to excel in image and video understanding, surpassing models like SigLIP2, InternVideo2, and DINOv2 across multiple benchmarks. Meanwhile,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    MetaCLIP

    MetaCLIP

    ICLR2024 Spotlight: curation/training code, metadata, distribution

    MetaCLIP is a research codebase that extends the CLIP framework into a meta-learning / continual learning regime, aiming to adapt CLIP-style models to new tasks or domains efficiently. The goal is to preserve CLIP’s strong zero-shot transfer capability while enabling fast adaptation to domain shifts or novel class sets with minimal data and without catastrophic forgetting. The repository provides training logic, adaptation strategies (e.g. prompt tuning, adapter modules), and evaluation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 10
    Large Concept Model

    Large Concept Model

    Language modeling in a sentence representation space

    Large Concept Model is a research codebase centered on concept-centric representation learning at scale, aiming to capture shared structure across many categories and modalities. It organizes training around concepts (rather than just raw labels), encouraging models to understand attributes, relations, and compositional structure that transfer across tasks. The repository provides training loops, data tooling, and evaluation routines to learn and probe these concept embeddings, typically...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Pearl

    Pearl

    A Production-ready Reinforcement Learning AI Agent Library

    Pearl is a production-ready reinforcement learning and contextual bandit agent library built for real-world sequential decision making. It is organized around modular components—policy learners, replay buffers, exploration strategies, safety modules, and history summarizers—that snap together to form reliable agents with clear boundaries and strong defaults. The library implements classic and modern algorithms across two regimes: contextual bandits (e.g., LinUCB, LinTS, SquareCB, neural...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Flow Matching

    Flow Matching

    A PyTorch library for implementing flow matching algorithms

    flow_matching is a PyTorch library implementing flow matching algorithms in both continuous and discrete settings, enabling generative modeling via matching vector fields rather than diffusion. The underlying idea is to parameterize a flow (a time-dependent vector field) that transports samples from a simple base distribution to a target distribution, and train via matching of flows without requiring score estimation or noisy corruption—this can lead to more efficient or stable generative...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    DeiT (Data-efficient Image Transformers)
    DeiT (Data-efficient Image Transformers) shows that Vision Transformers can be trained competitively on ImageNet-1k without external data by using strong training recipes and knowledge distillation. Its key idea is a specialized distillation strategy—including a learnable “distillation token”—that lets a transformer learn effectively from a CNN or transformer teacher on modest-scale datasets. The project provides compact ViT variants (Tiny/Small/Base) that achieve excellent...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    SlowFast

    SlowFast

    Video understanding codebase from FAIR for reproducing video models

    SlowFast is a video understanding framework that captures both spatial semantics and temporal dynamics efficiently by processing video frames at two different temporal resolutions. The slow pathway encodes semantic context by sampling frames sparsely, while the fast pathway captures motion and fine temporal cues by operating on densely sampled frames with fewer channels. Together, these two pathways complement each other, allowing the network to model both appearance and motion without...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    GLM-4

    GLM-4

    GLM-4 series: Open Multilingual Multimodal Chat LMs

    GLM-4 is a family of open models from ZhipuAI that spans base, chat, and reasoning variants at both 32B and 9B scales, with long-context support and practical local-deployment options. The GLM-4-32B-0414 models are trained on ~15T high-quality data (including substantial synthetic reasoning data), then post-trained with preference alignment, rejection sampling, and reinforcement learning to improve instruction following, coding, function calling, and agent-style behaviors. The...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    CogVLM

    CogVLM

    A state-of-the-art open visual language model

    CogVLM is an open-source visual–language model suite—and its GUI-oriented sibling CogAgent—aimed at image understanding, grounding, and multi-turn dialogue, with optional agent actions on real UI screenshots. The flagship CogVLM-17B combines ~10B visual parameters with ~7B language parameters and supports 490×490 inputs; CogAgent-18B extends this to 1120×1120 and adds plan/next-action outputs plus grounded operation coordinates for GUI tasks. The repo provides multiple ways to run models...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    VisualGLM-6B

    VisualGLM-6B

    Chinese and English multimodal conversational language model

    VisualGLM-6B is an open-source multimodal conversational language model developed by ZhipuAI that supports both images and text in Chinese and English. It builds on the ChatGLM-6B backbone, with 6.2 billion language parameters, and incorporates a BLIP2-Qformer visual module to connect vision and language. In total, the model has 7.8 billion parameters. Trained on a large bilingual dataset — including 30 million high-quality Chinese image-text pairs from CogView and 300 million English pairs...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    GLM-4-Voice

    GLM-4-Voice

    GLM-4-Voice | End-to-End Chinese-English Conversational Model

    GLM-4-Voice is an open-source speech-enabled model from ZhipuAI, extending the GLM-4 family into the audio domain. It integrates advanced voice recognition and generation with the multimodal reasoning capabilities of GLM-4, enabling smooth natural interaction via spoken input and output. The model supports real-time speech-to-text transcription, spoken dialogue understanding, and text-to-speech synthesis, making it suitable for conversational AI, virtual assistants, and accessibility...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    GLM-V

    GLM-V

    GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning

    GLM-V is an open-source vision-language model (VLM) series from ZhipuAI that extends the GLM foundation models into multimodal reasoning and perception. The repository provides both GLM-4.5V and GLM-4.1V models, designed to advance beyond basic perception toward higher-level reasoning, long-context understanding, and agent-based applications. GLM-4.5V builds on the flagship GLM-4.5-Air foundation (106B parameters, 12B active), achieving state-of-the-art results on 42 benchmarks across image,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    CogView4

    CogView4

    CogView4, CogView3-Plus and CogView3(ECCV 2024)

    CogView4 is the latest generation in the CogView series of vision-language foundation models, developed as a bilingual (Chinese and English) open-source system for high-quality image understanding and generation. Built on top of the GLM framework, it supports multimodal tasks including text-to-image synthesis, image captioning, and visual reasoning. Compared to previous CogView versions, CogView4 introduces architectural upgrades, improved training pipelines, and larger-scale datasets,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Mistral Finetune

    Mistral Finetune

    Memory-efficient and performant finetuning of Mistral's models

    mistral-finetune is an official lightweight codebase designed for memory-efficient and performant finetuning of Mistral’s open models (e.g. 7B, instruct variants). It builds on techniques like LoRA (Low-Rank Adaptation) to allow customizing models without full parameter updates, which reduces GPU memory footprint and training cost. The repo includes utilities for data preprocessing (e.g. reformat_data.py), validation scripts, and example YAML configs for training variants like 7B base or...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    DeepSeek MoE

    DeepSeek MoE

    Towards Ultimate Expert Specialization in Mixture-of-Experts Language

    DeepSeek-MoE (“DeepSeek MoE”) is the DeepSeek open implementation of a Mixture-of-Experts (MoE) model architecture meant to increase parameter efficiency by activating only a subset of “expert” submodules per input. The repository introduces fine-grained expert segmentation and shared expert isolation to improve specialization while controlling compute cost. For example, their MoE variant with 16.4B parameters claims comparable or better performance to standard dense models like DeepSeek 7B...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    DreamCraft3D

    DreamCraft3D

    Official implementation of DreamCraft3D

    DreamCraft3D is DeepSeek’s generative 3D modeling framework / model family that likely extends their earlier 3D efforts (e.g. Shap-E or Point-E style models) with more capability, control, or expression. The name suggests a “dream crafting” metaphor—users probably supply textual or image prompts and generate 3D assets (point clouds, meshes, scenes). The repository includes model code, inference scripts, sample prompts, and possibly dataset preparation pipelines. It may integrate rendering or...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    DeepSeek VL

    DeepSeek VL

    Towards Real-World Vision-Language Understanding

    DeepSeek-VL is DeepSeek’s initial vision-language model that anchors their multimodal stack. It enables understanding and generation across visual and textual modalities—meaning it can process an image + a prompt, answer questions about images, caption, classify, or reason about visuals in context. The model is likely used internally as the visual encoder backbone for agent use cases, to ground perception in downstream tasks (e.g. answering questions about a screenshot). The repository...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Improved Diffusion

    Improved Diffusion

    Release for Improved Denoising Diffusion Probabilistic Models

    improved-diffusion is an open source implementation of diffusion probabilistic models created by OpenAI. These models, also known as score-based generative models, are a class of generative models that have shown strong performance in producing high-quality synthetic data such as images. The repository provides code for training and sampling diffusion models with improved techniques that enhance stability, efficiency, and output fidelity. It includes scripts for setting up training runs,...
    Downloads: 0 This Week
    Last Update:
    See Project