Showing 40 open source projects for "model train design"

View related business solutions
  • Retool your internal operations Icon
    Retool your internal operations

    Generate secure, production-grade apps that connect to your business data. Not just prototypes, but tools your team can actually deploy.

    Build internal software that meets enterprise security standards without waiting on engineering resources. Retool connects to your databases, APIs, and data sources while maintaining the permissions and controls you need. Create custom dashboards, admin tools, and workflows from natural language prompts—all deployed in your cloud with security baked in. Stop duct-taping operations together, start building in Retool.
    Build an app in Retool
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 1
    Metaseq

    Metaseq

    Repo for external large-scale work

    Metaseq is a flexible, high-performance framework for training and serving large-scale sequence models, such as language models, translation systems, and instruction-tuned LLMs. Built on top of PyTorch, it provides distributed training, model sharding, mixed-precision computation, and memory-efficient checkpointing to support models with hundreds of billions of parameters. The framework was used internally at Meta to train models like OPT (Open Pre-trained Transformer) and serves as a reference implementation for scaling transformer architectures efficiently across GPUs and nodes. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    PRM800K

    PRM800K

    800,000 step-level correctness labels on LLM solutions to MATH problem

    PRM800K is a process supervision dataset accompanying the paper Let’s Verify Step by Step, providing 800,000 step-level correctness labels on model-generated solutions to problems from the MATH dataset. The repository releases the raw labels and the labeler instructions used in two project phases, enabling researchers to study how human raters graded intermediate reasoning. Data are stored as newline-delimited JSONL files tracked with Git LFS, where each line is a full solution sample that...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    DiT (Diffusion Transformers)

    DiT (Diffusion Transformers)

    Official PyTorch Implementation of "Scalable Diffusion Models"

    DiT (Diffusion Transformer) is a powerful architecture that applies transformer-based modeling directly to diffusion generative processes for high-quality image synthesis. Unlike CNN-based diffusion models, DiT represents the diffusion process in the latent space and processes image tokens through transformer blocks with learned positional encodings, offering scalability and superior sample quality. The model architecture parallels large language models but for image tokens—each block...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    VALL-E

    VALL-E

    PyTorch implementation of VALL-E (Zero-Shot Text-To-Speech)

    We introduce a language modeling approach for text to speech synthesis (TTS). Specifically, we train a neural codec language model (called VALL-E) using discrete codes derived from an off-the-shelf neural audio codec model, and regard TTS as a conditional language modeling task rather than continuous signal regression as in previous work. During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 5
    GPT-NeoX

    GPT-NeoX

    Implementation of model parallel autoregressive transformers on GPUs

    ...If you are not looking to train models with billions of parameters from scratch, this is likely the wrong library to use. For generic inference needs, we recommend you use the Hugging Face transformers library instead which supports GPT-NeoX models.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    Menagerie

    Menagerie

    A collection of high-quality models for the MuJoCo physics engine

    ...It serves as a comprehensive library of accurate and ready-to-use robotic, biomechanical, and mechanical models, ensuring users can perform reliable simulations without having to build or tune models from scratch. The repository aims to improve reproducibility and quality across robotics research by providing verified models that adhere to consistent design and physical standards. Each model directory contains its 3D assets, MJCF XML definitions, licensing information, and example scenes for visualization and testing. The collection spans a wide range of categories including robotic arms, humanoids, quadrupeds, mobile manipulators, drones, and biomechanical systems. Users can access models directly via the robot_descriptions Python package or by cloning the repository for use in interactive MuJoCo simulations.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 7
    LaMDA-pytorch

    LaMDA-pytorch

    Open-source pre-training implementation of Google's LaMDA in PyTorch

    Open-source pre-training implementation of Google's LaMDA research paper in PyTorch. The totally not sentient AI. This repository will cover the 2B parameter implementation of the pre-training architecture as that is likely what most can afford to train. You can review Google's latest blog post from 2022 which details LaMDA here. You can also view their previous blog post from 2021 on the model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    MaskFormer

    MaskFormer

    Per-Pixel Classification is Not All You Need for Semantic Segmentation

    ...Built on top of Detectron2, it supports a wide range of datasets including ADE20K, Cityscapes, COCO-Stuff, and Mapillary Vistas, and provides pretrained baselines for each. The model achieves strong performance and scalability while simplifying training and evaluation workflows. Its successor, Mask2Former, extends the same meta-architecture to achieve state-of-the-art results across all major segmentation benchmarks. MaskFormer’s modular design, dataset integration, and compatibility with existing Detectron2 models make it an essential research tool.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    GPT Neo

    GPT Neo

    An implementation of model parallel GPT-2 and GPT-3-style models

    An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here to play with our pre-trained models, we strongly recommend you try out the HuggingFace Transformer integration. Training and inference is officially supported on TPU and should work on GPU as well. This repository will be (mostly) archived as we move focus to our GPU-specific repo, GPT-NeoX. NB, while neo can technically run a training step at 200B+ parameters, it is very...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Payments you can rely on to run smarter. Icon
    Payments you can rely on to run smarter.

    Never miss a sale. Square payment processing serves customers better with tools and integrations that make work more efficient.

    Accept payments at your counter or on the go. It’s easy to get started. Try the Square POS app on your phone or pick from a range of hardworking hardware.
    Learn More
  • 10
    TimeSformer

    TimeSformer

    The official pytorch implementation of our paper

    ...TimeSformer was influential in showing that pure transformer architectures—without convolutional backbones—can perform strongly on video classification tasks. Its flexible attention design allows experimenting with different factoring (spatial-then-temporal, joint, etc.) to trade off compute, memory, and accuracy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Denoiser

    Denoiser

    Real Time Speech Enhancement in the Waveform Domain (Interspeech 2020)

    Denoiser is a real-time speech enhancement model operating directly on raw waveforms, designed to clean noisy audio while running efficiently on CPU. It uses a causal encoder-decoder architecture with skip connections, optimized with losses defined both in the time domain and frequency domain to better suppress noise while preserving speech. Unlike models that operate on spectrograms alone, this design enables lower latency and coherent waveform output.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    FixRes

    FixRes

    Reproduces results of "Fixing the train-test resolution discrepancy"

    FixRes is a lightweight yet powerful training methodology for convolutional neural networks (CNNs) that addresses the common train-test resolution discrepancy problem in image classification. Developed by Facebook Research, FixRes improves model generalization by adjusting training and evaluation procedures to better align input resolutions used during different phases. The approach is simple but highly effective, requiring no architectural modifications and working across diverse CNN backbones such as ResNet, ResNeXt, PNASNet, and EfficientNet. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    Multi-Agent Emergence Environments

    Multi-Agent Emergence Environments

    Environment generation code for the paper "Emergent Tool Use"

    multi-agent-emergence-environments is an open source research environment framework developed by OpenAI for the study of emergent behaviors in multi-agent systems. It was designed for the experiments described in the paper and blog post “Emergent Tool Use from Multi-Agent Autocurricula”, which investigated how complex cooperative and competitive behaviors can evolve through self-play. The repository provides environment generation code that builds on the mujoco-worldgen package, enabling...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    PyTorch GAN Zoo

    PyTorch GAN Zoo

    A mix of GAN implementations including progressive growing

    ...The project provides modular implementations of popular GAN architectures, including Progressive Growing of GANs (PGAN), DCGAN, and an experimental StyleGAN version. It is built to support both researchers and developers who want to train, evaluate, and extend GANs efficiently across diverse datasets such as CelebA-HQ, FashionGen, DTD, and CIFAR-10. In addition to core GAN training, the repository includes tools for model evaluation, such as Inception Score and SWD metrics, as well as advanced features like GDPP for diverse generation and AC-GAN conditioning for class-specific synthesis. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    PyTorch-BigGraph

    PyTorch-BigGraph

    Generate embeddings from large-scale graph-structured data

    ...The toolkit includes evaluation metrics and export tools so learned embeddings can be used in downstream nearest-neighbor search, recommendation, or analytics. In practice, PBG’s design lets practitioners train high-quality graph embeddings.
    Downloads: 0 This Week
    Last Update:
    See Project