Browse free open source Python AI Models and projects below. Use the toggles on the left to filter open source Python AI Models by OS, license, language, programming language, and project status.

  • Your top-rated shield against malware and online scams | Avast Free Antivirus Icon
    Your top-rated shield against malware and online scams | Avast Free Antivirus

    Browse and email in peace, supported by clever AI

    Our antivirus software scans for security and performance issues and helps you to fix them instantly. It also protects you in real time by analyzing unknown files before they reach your desktop PC or laptop — all for free.
    Free Download
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    DeepSeek R1

    DeepSeek R1

    Open-source, high-performance AI model with advanced reasoning

    DeepSeek-R1 is an open-source large language model developed by DeepSeek, designed to excel in complex reasoning tasks across domains such as mathematics, coding, and language. DeepSeek R1 offers unrestricted access for both commercial and academic use. The model employs a Mixture of Experts (MoE) architecture, comprising 671 billion total parameters with 37 billion active parameters per token, and supports a context length of up to 128,000 tokens. DeepSeek-R1's training regimen uniquely integrates large-scale reinforcement learning (RL) without relying on supervised fine-tuning, enabling the model to develop advanced reasoning capabilities. This approach has resulted in performance comparable to leading models like OpenAI's o1, while maintaining cost-efficiency. To further support the research community, DeepSeek has released distilled versions of the model based on architectures such as LLaMA and Qwen.
    Downloads: 46 This Week
    Last Update:
    See Project
  • 2
    DeepSeek-V3

    DeepSeek-V3

    Powerful AI language model (MoE) optimized for efficiency/performance

    DeepSeek-V3 is a robust Mixture-of-Experts (MoE) language model developed by DeepSeek, featuring a total of 671 billion parameters, with 37 billion activated per token. It employs Multi-head Latent Attention (MLA) and the DeepSeekMoE architecture to enhance computational efficiency. The model introduces an auxiliary-loss-free load balancing strategy and a multi-token prediction training objective to boost performance. Trained on 14.8 trillion diverse, high-quality tokens, DeepSeek-V3 underwent supervised fine-tuning and reinforcement learning to fully realize its capabilities. Evaluations indicate that it outperforms other open-source models and rivals leading closed-source models, achieving this with a training duration of 55 days on 2,048 Nvidia H800 GPUs, costing approximately $5.58 million.
    Downloads: 44 This Week
    Last Update:
    See Project
  • 3
    Phi-3-MLX

    Phi-3-MLX

    Phi-3.5 for Mac: Locally-run Vision and Language Models

    Phi-3-Vision-MLX is an Apple MLX (machine learning on Apple silicon) implementation of Phi-3 Vision, a lightweight multi-modal model designed for vision and language tasks. It focuses on running vision-language AI efficiently on Apple hardware like M1 and M2 chips.
    Downloads: 19 This Week
    Last Update:
    See Project
  • 4
    VALL-E

    VALL-E

    PyTorch implementation of VALL-E (Zero-Shot Text-To-Speech)

    We introduce a language modeling approach for text to speech synthesis (TTS). Specifically, we train a neural codec language model (called VALL-E) using discrete codes derived from an off-the-shelf neural audio codec model, and regard TTS as a conditional language modeling task rather than continuous signal regression as in previous work. During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems. VALL-E emerges in-context learning capabilities and can be used to synthesize high-quality personalized speech with only a 3-second enrolled recording of an unseen speaker as an acoustic prompt. Experiment results show that VALL-E significantly outperforms the state-of-the-art zero-shot TTS system in terms of speech naturalness and speaker similarity. In addition, we find VALL-E could preserve the speaker's emotion and acoustic environment of the acoustic prompt in synthesis.
    Downloads: 19 This Week
    Last Update:
    See Project
  • Simplify IT and security with a single endpoint management platform Icon
    Simplify IT and security with a single endpoint management platform

    Automate the hardest parts of IT

    NinjaOne automates the hardest parts of IT, delivering visibility, security, and control over all endpoints for more than 20,000 customers. The NinjaOne automated endpoint management platform is proven to increase productivity, reduce security risk, and lower costs for IT teams and managed service providers. The company seamlessly integrates with a wide range of IT and security technologies. NinjaOne is obsessed with customer success and provides free and unlimited onboarding, training, and support.
    Learn More
  • 5
    llama.cpp Python Bindings

    llama.cpp Python Bindings

    Python bindings for llama.cpp

    llama-cpp-python provides Python bindings for llama.cpp, enabling the integration of LLaMA (Large Language Model Meta AI) language models into Python applications. This facilitates the use of LLaMA's capabilities in natural language processing tasks within Python environments.
    Downloads: 19 This Week
    Last Update:
    See Project
  • 6
    DB-GPT

    DB-GPT

    Revolutionizing Database Interactions with Private LLM Technology

    DB-GPT is an experimental open-source project that uses localized GPT large models to interact with your data and environment. With this solution, you can be assured that there is no risk of data leakage, and your data is 100% private and secure.
    Downloads: 14 This Week
    Last Update:
    See Project
  • 7
    MedicalGPT

    MedicalGPT

    MedicalGPT: Training Your Own Medical GPT Model with ChatGPT Training

    MedicalGPT training medical GPT model with ChatGPT training pipeline, implementation of Pretraining, Supervised Finetuning, Reward Modeling and Reinforcement Learning. MedicalGPT trains large medical models, including secondary pre-training, supervised fine-tuning, reward modeling, and reinforcement learning training.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 8
    Stable-Dreamfusion

    Stable-Dreamfusion

    Text-to-3D & Image-to-3D & Mesh Exportation with NeRF + Diffusion

    A pytorch implementation of the text-to-3D model Dreamfusion, powered by the Stable Diffusion text-to-2D model. This project is a work-in-progress and contains lots of differences from the paper. The current generation quality cannot match the results from the original paper, and many prompts still fail badly! Since the Imagen model is not publicly available, we use Stable Diffusion to replace it (implementation from diffusers). Different from Imagen, Stable-Diffusion is a latent diffusion model, which diffuses in a latent space instead of the original image space. Therefore, we need the loss to propagate back from the VAE's encoder part too, which introduces extra time costs in training. We use the multi-resolution grid encoder to implement the NeRF backbone (implementation from torch-ngp), which enables much faster rendering.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 9
    AlphaGenome

    AlphaGenome

    Programmatic access to the AlphaGenome model

    The AlphaGenome API provides access to AlphaGenome, Google DeepMind’s unifying model for deciphering the regulatory code within DNA sequences. This repository contains client-side code, examples, and documentation to help you use the AlphaGenome API. AlphaGenome offers multimodal predictions, encompassing diverse functional outputs such as gene expression, splicing patterns, chromatin features, and contact maps. The model analyzes DNA sequences of up to 1 million base pairs in length and can deliver predictions at single-base-pair resolution for most outputs. AlphaGenome achieves state-of-the-art performance across a range of genomic prediction benchmarks, including numerous diverse variant effect prediction tasks.
    Downloads: 7 This Week
    Last Update:
    See Project
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 10
    GPT Neo

    GPT Neo

    An implementation of model parallel GPT-2 and GPT-3-style models

    An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here to play with our pre-trained models, we strongly recommend you try out the HuggingFace Transformer integration. Training and inference is officially supported on TPU and should work on GPU as well. This repository will be (mostly) archived as we move focus to our GPU-specific repo, GPT-NeoX. NB, while neo can technically run a training step at 200B+ parameters, it is very inefficient at those scales. This, as well as the fact that many GPUs became available to us, among other things, prompted us to move development over to GPT-NeoX. All evaluations were done using our evaluation harness. Some results for GPT-2 and GPT-3 are inconsistent with the values reported in the respective papers. We are currently looking into why, and would greatly appreciate feedback and further testing of our eval harness.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 11
    Stable Diffusion

    Stable Diffusion

    High-Resolution Image Synthesis with Latent Diffusion Models

    Stable Diffusion Version 2. The Stable Diffusion project, developed by Stability AI, is a cutting-edge image synthesis model that utilizes latent diffusion techniques for high-resolution image generation. It offers an advanced method of generating images based on text input, making it highly flexible for various creative applications. The repository contains pretrained models, various checkpoints, and tools to facilitate image generation tasks, such as fine-tuning and modifying the models. Stability AI's approach to image synthesis has contributed to creating detailed, scalable images while maintaining efficiency.
    Leader badge
    Downloads: 77 This Week
    Last Update:
    See Project
  • 12
    MiniCPM-o

    MiniCPM-o

    A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming

    MiniCPM-o 2.6 is a cutting-edge multimodal large language model (MLLM) designed for high-performance tasks across vision, speech, and video. Capable of running on end-side devices such as smartphones and tablets, it provides powerful features like real-time speech conversation, video understanding, and multimodal live streaming. With 8 billion parameters, MiniCPM-o 2.6 surpasses its predecessors in versatility and efficiency, making it one of the most robust models available. It supports both text and audio inputs to generate outputs in various forms, including voice cloning, emotion control, and interactive role-playing.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 13
    FinGPT

    FinGPT

    Open-Source Financial Large Language Models!

    FinGPT is an open-source large language model tailored specifically for financial tasks. Developed by AI4Finance Foundation, it is designed to assist with various financial applications, such as forecasting, financial sentiment analysis, and portfolio management. FinGPT has been trained on a diverse range of financial datasets, making it a powerful tool for finance professionals looking to leverage AI for data-driven decision-making. The model is freely available on platforms like Hugging Face, allowing for easy access and customization. FinGPT's capabilities are extended by its ability to integrate with existing financial systems and enhance predictive analytics in finance.
    Downloads: 36 This Week
    Last Update:
    See Project
  • 14
    GPT-NeoX

    GPT-NeoX

    Implementation of model parallel autoregressive transformers on GPUs

    This repository records EleutherAI's library for training large-scale language models on GPUs. Our current framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. We aim to make this repo a centralized and accessible place to gather techniques for training large-scale autoregressive language models, and accelerate research into large-scale training. For those looking for a TPU-centric codebase, we recommend Mesh Transformer JAX. If you are not looking to train models with billions of parameters from scratch, this is likely the wrong library to use. For generic inference needs, we recommend you use the Hugging Face transformers library instead which supports GPT-NeoX models.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    LaMDA-pytorch

    LaMDA-pytorch

    Open-source pre-training implementation of Google's LaMDA in PyTorch

    Open-source pre-training implementation of Google's LaMDA research paper in PyTorch. The totally not sentient AI. This repository will cover the 2B parameter implementation of the pre-training architecture as that is likely what most can afford to train. You can review Google's latest blog post from 2022 which details LaMDA here. You can also view their previous blog post from 2021 on the model.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    Qwen

    Qwen

    Qwen (通义千问) chat/pretrained large language model Alibaba Cloud

    Qwen is a series of large language models developed by Alibaba Cloud, consisting of various pretrained versions like Qwen-1.8B, Qwen-7B, Qwen-14B, and Qwen-72B. These models, which range from smaller to larger configurations, are designed for a wide range of natural language processing tasks. They are openly available for research and commercial use, with Qwen's code and model weights shared on GitHub. Qwen's capabilities include text generation, comprehension, and conversation, making it a versatile tool for developers looking to integrate advanced AI functionalities into their applications.
    Downloads: 28 This Week
    Last Update:
    See Project
  • 17
    DiffRhythm

    DiffRhythm

    Di♪♪Rhythm: Blazingly Fast & Simple End-to-End Song Generation

    DiffRhythm is an open-source, diffusion-based model designed to generate full-length songs. Focused on music creation, it combines advanced AI techniques to produce coherent and creative audio compositions. The model utilizes a latent diffusion architecture, making it capable of producing high-quality, long-form music. It can be accessed on Huggingface, where users can interact with a demo or download the model for further use. DiffRhythm offers tools for both training and inference, and its flexibility makes it ideal for AI-based music production and research in music generation.
    Leader badge
    Downloads: 16 This Week
    Last Update:
    See Project
  • 18
    Warlock-Studio

    Warlock-Studio

    AI-suite for image and video upscaling and enhancement.

    An open-source desktop application for AI-driven media enhancement, integrating state-of-the-art models for upscaling, restoration, and frame interpolation. Version 2.2 marks a major leap forward in stability and reliability, focused on ensuring your processing jobs run smoothly and complete successfully. Key enhancements: Enhanced Stability: Features a new logging system, proactive environment checks, and safe process management to prevent crashes and facilitate debugging. Resilient Video Processing: The overhauled video pipeline includes automatic hardware codec fallbacks and robust audio handling, guaranteeing a valid output file every time. Smart Resource Management: Dynamically recovers from GPU VRAM errors and uses aggressive memory optimization, allowing for stable processing of extremely long videos without failing.
    Downloads: 27 This Week
    Last Update:
    See Project
  • 19
    Stable Virtual Camera

    Stable Virtual Camera

    Stable Virtual Camera: Generative View Synthesis with Diffusion Models

    Stable Virtual Camera is a multi-view diffusion model developed by Stability AI that transforms 2D images into immersive 3D videos with realistic depth and perspective. Unlike traditional methods that require complex reconstruction or scene-specific optimization, this model allows users to generate novel views from any number of input images and define custom camera trajectories, enabling dynamic exploration of scenes. It supports various aspect ratios and can produce 3D-consistent videos up to 1,000 frames, making it a versatile tool for creators seeking to enhance visual storytelling. ​
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Hunyuan3D 2.0

    Hunyuan3D 2.0

    High-Resolution 3D Assets Generation with Large Scale Diffusion Models

    The Hunyuan3D-2 model, developed by Tencent, is designed for generating high-resolution 3D assets using large-scale diffusion models. This model offers advanced capabilities for creating detailed 3D models, including texture enhancements, multi-view shape generation, and rapid inference for real-time applications. It is particularly useful for industries requiring high-quality 3D content, such as gaming, film, and virtual reality. Hunyuan3D-2 supports various enhancements and is available for deployment through tools like Blender and Hugging Face.
    Leader badge
    Downloads: 24 This Week
    Last Update:
    See Project
  • 21
    Grok-1

    Grok-1

    Open-source, high-performance Mixture-of-Experts large language model

    Grok-1 is a 314-billion-parameter Mixture-of-Experts (MoE) large language model developed by xAI. Designed to optimize computational efficiency, it activates only 25% of its weights for each input token. In March 2024, xAI released Grok-1's model weights and architecture under the Apache 2.0 license, making them openly accessible to developers. The accompanying GitHub repository provides JAX example code for loading and running the model. Due to its substantial size, utilizing Grok-1 requires a machine with significant GPU memory. The repository's MoE layer implementation prioritizes correctness over efficiency, avoiding the need for custom kernels. This is a full repo snapshot ZIP file of the Grok-1 code.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 22
    Qwen2.5-Coder

    Qwen2.5-Coder

    Qwen2.5-Coder is the code version of Qwen2.5, the large language model

    Qwen2.5-Coder, developed by QwenLM, is an advanced open-source code generation model designed for developers seeking powerful and diverse coding capabilities. It includes multiple model sizes—ranging from 0.5B to 32B parameters—providing solutions for a wide array of coding needs. The model supports over 92 programming languages and offers exceptional performance in generating code, debugging, and mathematical problem-solving. Qwen2.5-Coder, with its long context length of 128K tokens, is ideal for a variety of use cases, from simple code assistants to complex programming scenarios, matching the capabilities of models like GPT-4o.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 23
    CSM (Conversational Speech Model)

    CSM (Conversational Speech Model)

    A Conversational Speech Generation Model

    The CSM (Conversational Speech Model) is a speech generation model developed by Sesame AI that creates RVQ audio codes from text and audio inputs. It uses a Llama backbone and a smaller audio decoder to produce audio codes for realistic speech synthesis. The model has been fine-tuned for interactive voice demos and is hosted on platforms like Hugging Face for testing. CSM offers a flexible setup and is compatible with CUDA-enabled GPUs for efficient execution.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 24
    Janus-Pro

    Janus-Pro

    Janus-Series: Unified Multimodal Understanding and Generation Models

    Janus is a cutting-edge, unified multimodal model designed to advance both multimodal understanding and generation. It features a decoupled visual encoding approach that allows it to handle visual tasks separately from the generative tasks, resulting in enhanced flexibility and performance. With a singular transformer architecture, Janus outperforms previous models by surpassing specialized task-specific models in its ability to handle diverse multimodal inputs and generate high-quality outputs. Its latest iteration, Janus-Pro, improves on this with a more optimized training strategy, expanded data, and larger model scaling, leading to significant advancements in both multimodal understanding and text-to-image generation.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    GLM-4-32B-0414

    GLM-4-32B-0414

    Open Multilingual Multimodal Chat LMs

    GLM-4-32B-0414 is a powerful open-source large language model featuring 32 billion parameters, designed to deliver performance comparable to leading models like OpenAI’s GPT series. It supports multilingual and multimodal chat capabilities with an extensive 32K token context length, making it ideal for dialogue, reasoning, and complex task completion. The model is pre-trained on 15 trillion tokens of high-quality data, including substantial synthetic reasoning datasets, and further enhanced with reinforcement learning and human preference alignment for improved instruction-following and function calling. Variants like GLM-Z1-32B-0414 offer deep reasoning and advanced mathematical problem-solving, while GLM-Z1-Rumination-32B-0414 specializes in long-form, complex research-style writing using scaled reinforcement learning and external search tools. Despite its large capacity, the model supports user-friendly local deployment and efficient fine-tuning with available scripts.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.