Showing 20 open source projects for "speech"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 1
    IndexTTS2

    IndexTTS2

    Industrial-level controllable zero-shot text-to-speech system

    IndexTTS is a modern, zero-shot text-to-speech (TTS) system engineered to deliver high-quality, natural-sounding speech synthesis with few requirements and strong voice-cloning capabilities. It builds on state-of-the-art models such as XTTS and other modern neural TTS backbones, improving them with a conformer-based speech conditional encoder and upgrading the decoder to a high-quality vocoder (BigVGAN2), leading to clearer and more natural audio output.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 2
    Qwen3-Omni

    Qwen3-Omni

    Qwen3-omni is a natively end-to-end, omni-modal LLM

    Qwen3-Omni is a natively end-to-end multilingual omni-modal foundation model that processes text, images, audio, and video and delivers real-time streaming responses in text and natural speech. It uses a Thinker-Talker architecture with a Mixture-of-Experts (MoE) design, early text-first pretraining, and mixed multimodal training to support strong performance across all modalities without sacrificing text or image quality. The model supports 119 text languages, 19 speech input languages, and 10 speech output languages. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    Qwen2.5-Omni

    Qwen2.5-Omni

    Capable of understanding text, audio, vision, video

    ...Very strong benchmark performance across modalities (audio understanding, speech recognition, image/video reasoning) and often outperforming or matching single-modality models at a similar scale. Real-time streaming responses, including natural speech synthesis (text-to-speech) and chunked inputs for low latency interaction.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    VibeVoice

    VibeVoice

    Open-source multi-speaker long-form text-to-speech model

    VibeVoice-1.5B is Microsoft’s frontier open-source text-to-speech (TTS) model designed for generating expressive, long-form, multi-speaker conversational audio such as podcasts. Unlike traditional TTS systems, it excels in scalability, speaker consistency, and natural turn-taking for up to 90 minutes of continuous speech with as many as four distinct speakers. A key innovation is its use of continuous acoustic and semantic speech tokenizers operating at an ultra-low frame rate of 7.5 Hz, enabling high audio fidelity with efficient processing of long sequences. ...
    Downloads: 12 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    GLM-4-Voice

    GLM-4-Voice

    GLM-4-Voice | End-to-End Chinese-English Conversational Model

    GLM-4-Voice is an open-source speech-enabled model from ZhipuAI, extending the GLM-4 family into the audio domain. It integrates advanced voice recognition and generation with the multimodal reasoning capabilities of GLM-4, enabling smooth natural interaction via spoken input and output. The model supports real-time speech-to-text transcription, spoken dialogue understanding, and text-to-speech synthesis, making it suitable for conversational AI, virtual assistants, and accessibility applications. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    Kitten TTS

    Kitten TTS

    State-of-the-art TTS model under 25MB

    KittenTTS is an open-source, ultra-lightweight, and high-quality text-to-speech model featuring just 15 million parameters and a binary size under 25 MB. It is designed for real-time CPU-based deployment across diverse platforms. Ultra-lightweight, model size less than 25MB. CPU-optimized, runs without GPU on any device. High-quality voices, several premium voice options available. Fast inference, optimized for real-time speech synthesis.
    Downloads: 16 This Week
    Last Update:
    See Project
  • 7
    GLM-TTS

    GLM-TTS

    Controllable & emotion-expressive zero-shot TTS

    GLM-TTS is an advanced text-to-speech synthesis system built on large language model technologies that focuses on producing high-quality, expressive, and controllable spoken output, including features like emotion modulation and zero-shot voice cloning. It uses a two-stage architecture where a generative LLM first converts text into intermediate speech token sequences and then a Flow-based neural model converts those tokens into natural audio waveforms, enabling rich prosody and voice character even for unseen speakers. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    Qwen3-TTS

    Qwen3-TTS

    Qwen3-TTS is an open-source series of TTS models

    Qwen3-TTS is an open-source text-to-speech (TTS) project built around the Qwen3 large language model family, focused on generating high-quality, natural-sounding speech from plain text input. It provides researchers and developers with tools to transform text into expressive, intelligible audio, supporting multiple languages and voice characteristics tuned for clarity and fluidity.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Qwen2-Audio

    Qwen2-Audio

    Repo of Qwen2-Audio chat & pretrained large audio language model

    ...Code & examples provided with Hugging Face transformers, and usage via AutoProcessor, model classes etc. High performance on many standard benchmarks: ASR, speech-emotion recognition, vocal sound classification, speech translation etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    MiniCPM-o

    MiniCPM-o

    A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming

    MiniCPM-o 2.6 is a cutting-edge multimodal large language model (MLLM) designed for high-performance tasks across vision, speech, and video. Capable of running on end-side devices such as smartphones and tablets, it provides powerful features like real-time speech conversation, video understanding, and multimodal live streaming. With 8 billion parameters, MiniCPM-o 2.6 surpasses its predecessors in versatility and efficiency, making it one of the most robust models available. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    fairseq2

    fairseq2

    FAIR Sequence Modeling Toolkit 2

    fairseq2 is a modern, modular sequence modeling framework developed by Meta AI Research as a complete redesign of the original fairseq library. Built from the ground up for scalability, composability, and research flexibility, fairseq2 supports a broad range of language, speech, and multimodal content generation tasks, including instruction fine-tuning, reinforcement learning from human feedback (RLHF), and large-scale multilingual modeling. Unlike the original fairseq—which evolved into a large, monolithic codebase—fairseq2 introduces a clean, plugin-oriented architecture designed for long-term maintainability and rapid experimentation. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Seamless Communication

    Seamless Communication

    Foundational Models for State-of-the-Art Speech and Text Translation

    Seamless Communication is a research project focused on building more integrated, low-latency multimodal communication between humans and AI agents. The motivation is to move beyond “text in, text out” and enable direct, live, multi-turn exchange involving language, gesture, gaze, vision, and modality switching without user friction. The system architecture includes a real-time multimodal signal pipeline for audio, video, and sensor data, a dialog manager that can decide when to act (speak,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Qwen-Audio

    Qwen-Audio

    Chat & pretrained large audio language model proposed by Alibaba Cloud

    Qwen-Audio is a large audio-language model developed by Alibaba Cloud, built to accept various types of audio input (speech, natural sounds, music, singing) along with text input, and output text. There is also an instruction-tuned version called Qwen-Audio-Chat which supports conversational interaction (multi-round), audio + text input, creative tasks and reasoning over audio. It uses multi-task training over many different audio tasks (30+), and achieves strong multi-benchmarks performance without task-specific fine‐tuning. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    CSM (Conversational Speech Model)

    CSM (Conversational Speech Model)

    A Conversational Speech Generation Model

    The CSM (Conversational Speech Model) is a speech generation model developed by Sesame AI that creates RVQ audio codes from text and audio inputs. It uses a Llama backbone and a smaller audio decoder to produce audio codes for realistic speech synthesis. The model has been fine-tuned for interactive voice demos and is hosted on platforms like Hugging Face for testing.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 15
    VALL-E

    VALL-E

    PyTorch implementation of VALL-E (Zero-Shot Text-To-Speech)

    We introduce a language modeling approach for text to speech synthesis (TTS). Specifically, we train a neural codec language model (called VALL-E) using discrete codes derived from an off-the-shelf neural audio codec model, and regard TTS as a conditional language modeling task rather than continuous signal regression as in previous work. During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 16
    Denoiser

    Denoiser

    Real Time Speech Enhancement in the Waveform Domain (Interspeech 2020)

    Denoiser is a real-time speech enhancement model operating directly on raw waveforms, designed to clean noisy audio while running efficiently on CPU. It uses a causal encoder-decoder architecture with skip connections, optimized with losses defined both in the time domain and frequency domain to better suppress noise while preserving speech. Unlike models that operate on spectrograms alone, this design enables lower latency and coherent waveform output.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    wav2vec2-large-xlsr-53-russian

    wav2vec2-large-xlsr-53-russian

    Russian ASR model fine-tuned on Common Voice and CSS10 datasets

    wav2vec2-large-xlsr-53-russian is a fine-tuned automatic speech recognition (ASR) model based on Facebook’s wav2vec2-large-xlsr-53 and optimized for Russian. It was trained using Mozilla’s Common Voice 6.1 and CSS10 datasets to recognize Russian speech with high accuracy. The model operates best with audio sampled at 16kHz and can transcribe Russian speech directly without a language model. It achieves a Word Error Rate (WER) of 13.3% and Character Error Rate (CER) of 2.88% on the Common Voice test set, with even better results when used with a language model. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    mms-300m-1130-forced-aligner

    mms-300m-1130-forced-aligner

    CTC-based forced aligner for audio-text in 158 languages

    ...Users can integrate it easily through the Python package ctc-forced-aligner, and it supports GPU acceleration via PyTorch. The alignment pipeline includes audio processing, emission generation, tokenization, and span detection, making it suitable for speech analysis, transcription syncing, and dataset creation. This model is especially useful for researchers and developers working with low-resource languages or building multilingual speech systems.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    wav2vec2-large-xlsr-53-portuguese

    wav2vec2-large-xlsr-53-portuguese

    Portuguese ASR model fine-tuned on XLSR-53 for 16kHz audio input

    wav2vec2-large-xlsr-53-portuguese is an automatic speech recognition (ASR) model fine-tuned on Portuguese using the Common Voice 6.1 dataset. It is based on Facebook’s wav2vec2-large-xlsr-53, a multilingual self-supervised learning model, and is optimized to transcribe Portuguese speech sampled at 16kHz. The model performs well without a language model, though adding one can improve word error rate (WER) and character error rate (CER).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Dia-1.6B

    Dia-1.6B

    Dia-1.6B generates lifelike English dialogue and vocal expressions

    Dia-1.6B is a 1.6 billion parameter text-to-speech model by Nari Labs that generates high-fidelity dialogue directly from transcripts. Designed for realistic vocal performance, Dia supports expressive features like emotion, tone control, and non-verbal cues such as laughter, coughing, or sighs. The model accepts speaker conditioning through audio prompts, allowing limited voice cloning and speaker consistency across generations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next