Showing 12 open source projects for "mysql for python 3"

View related business solutions
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 1
    SAM 3

    SAM 3

    Code for running inference and finetuning with SAM 3 model

    SAM 3 (Segment Anything Model 3) is a unified foundation model for promptable segmentation in both images and videos, capable of detecting, segmenting, and tracking objects. It accepts both text prompts (open-vocabulary concepts like “red car” or “goalkeeper in white”) and visual prompts (points, boxes, masks) and returns high-quality masks, boxes, and scores for the requested concepts. Compared with SAM 2, SAM 3 introduces the ability to exhaustively segment all instances of an...
    Downloads: 113 This Week
    Last Update:
    See Project
  • 2
    Phi-3-MLX

    Phi-3-MLX

    Phi-3.5 for Mac: Locally-run Vision and Language Models

    Phi-3-Vision-MLX is an Apple MLX (machine learning on Apple silicon) implementation of Phi-3 Vision, a lightweight multi-modal model designed for vision and language tasks. It focuses on running vision-language AI efficiently on Apple hardware like M1 and M2 chips.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    HunyuanImage-3.0

    HunyuanImage-3.0

    A Powerful Native Multimodal Model for Image Generation

    HunyuanImage-3.0 is a powerful, native multimodal text-to-image generation model released by Tencent’s Hunyuan team. It unifies multimodal understanding and generation in a single autoregressive framework, combining text and image modalities seamlessly rather than relying on separate image-only diffusion components. It uses a Mixture-of-Experts (MoE) architecture with many expert subnetworks to scale efficiently, deploying only a subset of experts per token, which allows large parameter...
    Downloads: 18 This Week
    Last Update:
    See Project
  • 4
    Anthropic SDK Python

    Anthropic SDK Python

    Provides convenient access to the Anthropic REST API from any Python 3

    The anthropic-sdk-python repository is the official Python client library for interacting with the Anthropic (Claude) REST API. It is designed to provide a user-friendly, type-safe, and asynchronous/synchronous capable interface for making chat/completion requests to models like Claude. The library includes definitions for all request and response parameters using Python typed objects, automatically handles serialization and deserialization, and wraps HTTP logic (timeouts, retries, error...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Leverage AI to Automate Medical Coding Icon
    Leverage AI to Automate Medical Coding

    Medical Coding Solution

    As a healthcare provider, you should be paid promptly for the services you provide to patients. Slow, inefficient, and error-prone manual coding keeps you from the financial peace you deserve. XpertDox’s autonomous coding solution accelerates the revenue cycle so you can focus on providing great healthcare.
    Learn More
  • 5
    rwkv.cpp

    rwkv.cpp

    INT4/INT5/INT8 and FP16 inference on CPU for RWKV language model

    Besides the usual FP32, it supports FP16, quantized INT4, INT5 and INT8 inference. This project is focused on CPU, but cuBLAS is also supported. RWKV is a novel large language model architecture, with the largest model in the family having 14B parameters. In contrast to Transformer with O(n^2) attention, RWKV requires only state from the previous step to calculate logits. This makes RWKV very CPU-friendly on large context lengths.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    MedGemma

    MedGemma

    Collection of Gemma 3 variants that are trained for performance

    MedGemma is a collection of specialized open-source AI models created by Google as part of its Health AI Developer Foundations initiative, built on the Gemma 3 family of transformer models and trained for medical text and image comprehension tasks that help accelerate the development of healthcare-focused AI applications. It includes multiple variants such as a 4 billion-parameter multimodal model that can process both medical images and text and a 27 billion-parameter text-only (and...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    HY-Motion 1.0

    HY-Motion 1.0

    HY-Motion model for 3D character animation generation

    HY-Motion 1.0 is an open-source, large-scale AI model suite developed by Tencent’s Hunyuan team that generates high-quality 3D human motion from simple text prompts, enabling the automatic production of fluid, diverse, and semantically accurate animations without manual keyframing or rigging. Built on advanced deep learning architectures that combine Diffusion Transformer (DiT) and flow matching techniques, HY-Motion scales these approaches to the billion-parameter level, resulting in strong...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 8
    GLM-130B

    GLM-130B

    GLM-130B: An Open Bilingual Pre-Trained Model (ICLR 2023)

    GLM-130B is an open bilingual (English and Chinese) dense language model with 130 billion parameters, released by the Tsinghua KEG Lab and collaborators as part of the General Language Model (GLM) series. It is designed for large-scale inference and supports both left-to-right generation and blank filling, making it versatile across NLP tasks. Trained on over 400 billion tokens (200B English, 200B Chinese), it achieves performance surpassing GPT-3 175B, OPT-175B, and BLOOM-176B on multiple...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    VALL-E

    VALL-E

    PyTorch implementation of VALL-E (Zero-Shot Text-To-Speech)

    We introduce a language modeling approach for text to speech synthesis (TTS). Specifically, we train a neural codec language model (called VALL-E) using discrete codes derived from an off-the-shelf neural audio codec model, and regard TTS as a conditional language modeling task rather than continuous signal regression as in previous work. During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems....
    Downloads: 4 This Week
    Last Update:
    See Project
  • DAT Freight and Analytics - DAT Icon
    DAT Freight and Analytics - DAT

    DAT Freight and Analytics operates DAT One truckload freight marketplace

    DAT Freight & Analytics operates DAT One, North America’s largest truckload freight marketplace; DAT iQ, the industry’s leading freight data analytics service; and Trucker Tools, the leader in load visibility. Shippers, transportation brokers, carriers, news organizations, and industry analysts rely on DAT for market trends and data insights, informed by nearly 700,000 daily load posts and a database exceeding $1 trillion in freight market transactions. Founded in 1978, DAT is a business unit of Roper Technologies (Nasdaq: ROP), a constituent of the Nasdaq 100, S&P 500, and Fortune 1000. Headquartered in Beaverton, Ore., DAT continues to set the standard for innovation in the trucking and logistics industry.
    Learn More
  • 10
    ToMe (Token Merging)

    ToMe (Token Merging)

    A method to increase the speed and lower the memory footprint

    ToMe (Token Merging) is a PyTorch-based optimization framework designed to significantly accelerate Vision Transformer (ViT) architectures without retraining. Developed by researchers at Facebook (Meta AI), ToMe introduces an efficient technique that merges similar tokens within transformer layers, reducing redundant computation while preserving model accuracy. This approach differs from token pruning, which removes background tokens entirely; instead, ToMe merges tokens based on feature...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    GPT Neo

    GPT Neo

    An implementation of model parallel GPT-2 and GPT-3-style models

    An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here to play with our pre-trained models, we strongly recommend you try out the HuggingFace Transformer integration. Training and inference is officially supported on TPU and should work on GPU as well. This repository will be (mostly) archived as we move focus to our GPU-specific repo, GPT-NeoX. NB, while neo can technically run a training step at 200B+ parameters, it is very...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 12
    mms-300m-1130-forced-aligner

    mms-300m-1130-forced-aligner

    CTC-based forced aligner for audio-text in 158 languages

    mms-300m-1130-forced-aligner is a multilingual forced alignment model based on Meta’s MMS-300M wav2vec2 checkpoint, adapted for Hugging Face’s Transformers library. It supports forced alignment between audio and corresponding text across 158 languages, offering broad multilingual coverage. The model enables accurate word- or phoneme-level timestamping using Connectionist Temporal Classification (CTC) emissions. Unlike other tools, it provides significant memory efficiency compared to the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next