Showing 2 open source projects for "binary code generator"

View related business solutions
  • Run Any Workload on Compute Engine VMs Icon
    Run Any Workload on Compute Engine VMs

    From dev environments to AI training, choose preset or custom VMs with 1–96 vCPUs and industry-leading 99.95% uptime SLA.

    Compute Engine delivers high-performance virtual machines for web apps, databases, containers, and AI workloads. Choose from general-purpose, compute-optimized, or GPU/TPU-accelerated machine types—or build custom VMs to match your exact specs. With live migration and automatic failover, your workloads stay online. New customers get $300 in free credits.
    Try Compute Engine
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    InfoGAN

    InfoGAN

    Code for reproducing key results in the paper

    ...InfoGAN is a variant of the GAN (Generative Adversarial Network) architecture that aims to learn disentangled and interpretable latent representations by maximizing the mutual information between a subset of the latent codes and the generated outputs. That extra incentive encourages the generator to structure its latent space in a way where certain latent variables control meaningful, distinct factors (e.g. rotation, width, stroke thickness) in the output images. The repository includes code for experiments (e.g. on MNIST), launcher scripts, and some tests. It depends on a development version of TensorFlow (the code expects features not in older stable releases), and also uses other libraries like prettytensor and progressbar.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    SG2Im

    SG2Im

    Code for "Image Generation from Scene Graphs", Johnson et al, CVPR 201

    ...This separation lets the model reason about geometry and composition before committing to texture and color, improving spatial fidelity. The repository includes training code, datasets, and evaluation scripts so researchers can reproduce baselines and extend components such as the graph encoder or image generator. In practice, sg2im demonstrates how structured semantics can guide generative models to produce controllable, compositional imagery.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB