Browse free open source AI Models and projects for Mac below. Use the toggles on the left to filter open source AI Models by OS, license, language, programming language, and project status.

  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    GLM-4.7

    GLM-4.7

    Advanced language and coding AI model

    GLM-4.7 is an advanced agent-oriented large language model designed as a high-performance coding and reasoning partner. It delivers significant gains over GLM-4.6 in multilingual agentic coding, terminal-based workflows, and real-world developer benchmarks such as SWE-bench and Terminal Bench 2.0. The model introduces stronger “thinking before acting” behavior, improving stability and accuracy in complex agent frameworks like Claude Code, Cline, and Roo Code. GLM-4.7 also advances “vibe coding,” producing cleaner, more modern UIs, better-structured webpages, and visually improved slide layouts. Its tool-use capabilities are substantially enhanced, with notable improvements in browsing, search, and tool-integrated reasoning tasks. Overall, GLM-4.7 shows broad performance upgrades across coding, reasoning, chat, creative writing, and role-play scenarios.
    Downloads: 324 This Week
    Last Update:
    See Project
  • 2
    Wan2.2

    Wan2.2

    Wan2.2: Open and Advanced Large-Scale Video Generative Model

    Wan2.2 is a major upgrade to the Wan series of open and advanced large-scale video generative models, incorporating cutting-edge innovations to boost video generation quality and efficiency. It introduces a Mixture-of-Experts (MoE) architecture that splits the denoising process across specialized expert models, increasing total model capacity without raising computational costs. Wan2.2 integrates meticulously curated cinematic aesthetic data, enabling precise control over lighting, composition, color tone, and more, for high-quality, customizable video styles. The model is trained on significantly larger datasets than its predecessor, greatly enhancing motion complexity, semantic understanding, and aesthetic diversity. Wan2.2 also open-sources a 5-billion parameter high-compression VAE-based hybrid text-image-to-video (TI2V) model that supports 720P video generation at 24fps on consumer-grade GPUs like the RTX 4090. It supports multiple video generation tasks including text-to-video.
    Downloads: 240 This Week
    Last Update:
    See Project
  • 3
    Z-Image

    Z-Image

    Image generation model with single-stream diffusion transformer

    Z-Image is an efficient, open-source image generation foundation model built to make high-quality image synthesis more accessible. With just 6 billion parameters — far fewer than many large-scale models — it uses a novel “single-stream diffusion Transformer” architecture to deliver photorealistic image generation, demonstrating that excellence does not always require extremely large model sizes. The project includes several variants: Z-Image-Turbo, a distilled version optimized for speed and low resource consumption; Z-Image-Base, the full-capacity foundation model; and Z-Image-Edit, fine-tuned for image editing tasks. Despite its compact size, Z-Image produces outputs that closely rival those from much larger models — including strong rendering of bilingual (English and Chinese) text inside images, accurate prompt adherence, and good layout and composition.
    Downloads: 153 This Week
    Last Update:
    See Project
  • 4
    llama.cpp

    llama.cpp

    Port of Facebook's LLaMA model in C/C++

    The llama.cpp project enables the inference of Meta's LLaMA model (and other models) in pure C/C++ without requiring a Python runtime. It is designed for efficient and fast model execution, offering easy integration for applications needing LLM-based capabilities. The repository focuses on providing a highly optimized and portable implementation for running large language models directly within C/C++ environments.
    Downloads: 122 This Week
    Last Update:
    See Project
  • Atera - The depth of a full-stack IT platform, with the power of AI. Icon
    Atera - The depth of a full-stack IT platform, with the power of AI.

    Atera introduces your autonomous AI agent - Ensure operational efficiency at any scale with 24/7 autonomous IT support.

    Atera prioritizes security and compliance through robust protections that align with industry standards. Our AI-driven features were built on responsible AI principles and empower IT teams to work efficiently while maintaining trust and compliance.
    Learn More
  • 5
    Kimi K2

    Kimi K2

    Kimi K2 is the large language model series developed by Moonshot AI

    Kimi K2 is Moonshot AI’s advanced open-source large language model built on a scalable Mixture-of-Experts (MoE) architecture that combines a trillion total parameters with a subset of ~32 billion active parameters to deliver powerful and efficient performance on diverse tasks. It was trained on an enormous corpus of over 15.5 trillion tokens to push frontier capabilities in coding, reasoning, and general agentic tasks while addressing training stability through novel optimizer and architecture design strategies. The model family includes variants like a foundational base model that researchers can fine-tune for specific use cases and an instruct-optimized variant primed for general-purpose chat and agent-style interactions, offering flexibility for both experimentation and deployment. With its high-dimensional attention mechanisms and expert routing, Kimi-K2 excels across benchmarks in live coding, math reasoning, and problem solving.
    Downloads: 111 This Week
    Last Update:
    See Project
  • 6
    LingBot-World

    LingBot-World

    Advancing Open-source World Models

    LingBot-World is an open-source, high-fidelity world simulator designed to advance the state of world models through video generation. Built on top of Wan2.2, it enables realistic, dynamic environment simulation across diverse styles, including real-world, scientific, and stylized domains. LingBot-World supports long-term temporal consistency, maintaining coherent scenes and interactions over minute-level horizons. With real-time interactivity and sub-second latency at 16 FPS, it is well-suited for interactive applications and rapid experimentation. The project is fully open-access, releasing both code and models to help bridge the gap between closed and open world-model systems. LingBot-World empowers researchers and developers in areas such as content creation, gaming, robotics, and embodied AI learning.
    Downloads: 109 This Week
    Last Update:
    See Project
  • 7
    GLM-4.6

    GLM-4.6

    Agentic, Reasoning, and Coding (ARC) foundation models

    GLM-4.6 is the latest iteration of Zhipu AI’s foundation model, delivering significant advancements over GLM-4.5. It introduces an extended 200K token context window, enabling more sophisticated long-context reasoning and agentic workflows. The model achieves superior coding performance, excelling in benchmarks and practical coding assistants such as Claude Code, Cline, Roo Code, and Kilo Code. Its reasoning capabilities have been strengthened, including improved tool usage during inference and more effective integration within agent frameworks. GLM-4.6 also enhances writing quality, producing outputs that better align with human preferences and role-playing scenarios. Benchmark evaluations demonstrate that it not only outperforms GLM-4.5 but also rivals leading global models such as DeepSeek-V3.1-Terminus and Claude Sonnet 4.
    Downloads: 96 This Week
    Last Update:
    See Project
  • 8
    DeepSeek R1

    DeepSeek R1

    Open-source, high-performance AI model with advanced reasoning

    DeepSeek-R1 is an open-source large language model developed by DeepSeek, designed to excel in complex reasoning tasks across domains such as mathematics, coding, and language. DeepSeek R1 offers unrestricted access for both commercial and academic use. The model employs a Mixture of Experts (MoE) architecture, comprising 671 billion total parameters with 37 billion active parameters per token, and supports a context length of up to 128,000 tokens. DeepSeek-R1's training regimen uniquely integrates large-scale reinforcement learning (RL) without relying on supervised fine-tuning, enabling the model to develop advanced reasoning capabilities. This approach has resulted in performance comparable to leading models like OpenAI's o1, while maintaining cost-efficiency. To further support the research community, DeepSeek has released distilled versions of the model based on architectures such as LLaMA and Qwen.
    Downloads: 91 This Week
    Last Update:
    See Project
  • 9
    SAM 3

    SAM 3

    Code for running inference and finetuning with SAM 3 model

    SAM 3 (Segment Anything Model 3) is a unified foundation model for promptable segmentation in both images and videos, capable of detecting, segmenting, and tracking objects. It accepts both text prompts (open-vocabulary concepts like “red car” or “goalkeeper in white”) and visual prompts (points, boxes, masks) and returns high-quality masks, boxes, and scores for the requested concepts. Compared with SAM 2, SAM 3 introduces the ability to exhaustively segment all instances of an open-vocabulary concept specified by a short phrase or exemplars, scaling to a vastly larger set of categories than traditional closed-set models. This capability is grounded in a new data engine that automatically annotated over four million unique concepts, producing a massive open-vocabulary segmentation dataset and enabling the model to achieve 75–80% of human performance on the SA-CO benchmark, which itself spans 270K unique concepts.
    Downloads: 75 This Week
    Last Update:
    See Project
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 10
    GLM-4.5

    GLM-4.5

    GLM-4.5: Open-source LLM for intelligent agents by Z.ai

    GLM-4.5 is a cutting-edge open-source large language model designed by Z.ai for intelligent agent applications. The flagship GLM-4.5 model has 355 billion total parameters with 32 billion active parameters, while the compact GLM-4.5-Air version offers 106 billion total parameters and 12 billion active parameters. Both models unify reasoning, coding, and intelligent agent capabilities, providing two modes: a thinking mode for complex reasoning and tool usage, and a non-thinking mode for immediate responses. They are released under the MIT license, allowing commercial use and secondary development. GLM-4.5 achieves strong performance on 12 industry-standard benchmarks, ranking 3rd overall, while GLM-4.5-Air balances competitive results with greater efficiency. The models support FP8 and BF16 precision, and can handle very large context windows of up to 128K tokens. Flexible inference is supported through frameworks like vLLM and SGLang with tool-call and reasoning parsers included.
    Downloads: 68 This Week
    Last Update:
    See Project
  • 11
    HunyuanWorld-Voyager

    HunyuanWorld-Voyager

    RGBD video generation model conditioned on camera input

    HunyuanWorld-Voyager is a next-generation video diffusion framework developed by Tencent-Hunyuan for generating world-consistent 3D scene videos from a single input image. By leveraging user-defined camera paths, it enables immersive scene exploration and supports controllable video synthesis with high realism. The system jointly produces aligned RGB and depth video sequences, making it directly applicable to 3D reconstruction tasks. At its core, Voyager integrates a world-consistent video diffusion model with an efficient long-range world exploration engine powered by auto-regressive inference. To support training, the team built a scalable data engine that automatically curates large video datasets with camera pose estimation and metric depth prediction. As a result, Voyager delivers state-of-the-art performance on world exploration benchmarks while maintaining photometric, style, and 3D consistency.
    Downloads: 63 This Week
    Last Update:
    See Project
  • 12
    Qwen3

    Qwen3

    Qwen3 is the large language model series developed by Qwen team

    Qwen3 is a cutting-edge large language model (LLM) series developed by the Qwen team at Alibaba Cloud. The latest updated version, Qwen3-235B-A22B-Instruct-2507, features significant improvements in instruction-following, reasoning, knowledge coverage, and long-context understanding up to 256K tokens. It delivers higher quality and more helpful text generation across multiple languages and domains, including mathematics, coding, science, and tool usage. Various quantized versions, tools/pipelines provided for inference using quantized formats (e.g. GGUF, etc.). Coverage for many languages in training and usage, alignment with human preferences in open-ended tasks, etc.
    Downloads: 63 This Week
    Last Update:
    See Project
  • 13
    DeepSeek-V3

    DeepSeek-V3

    Powerful AI language model (MoE) optimized for efficiency/performance

    DeepSeek-V3 is a robust Mixture-of-Experts (MoE) language model developed by DeepSeek, featuring a total of 671 billion parameters, with 37 billion activated per token. It employs Multi-head Latent Attention (MLA) and the DeepSeekMoE architecture to enhance computational efficiency. The model introduces an auxiliary-loss-free load balancing strategy and a multi-token prediction training objective to boost performance. Trained on 14.8 trillion diverse, high-quality tokens, DeepSeek-V3 underwent supervised fine-tuning and reinforcement learning to fully realize its capabilities. Evaluations indicate that it outperforms other open-source models and rivals leading closed-source models, achieving this with a training duration of 55 days on 2,048 Nvidia H800 GPUs, costing approximately $5.58 million.
    Downloads: 59 This Week
    Last Update:
    See Project
  • 14
    Wan2.1

    Wan2.1

    Wan2.1: Open and Advanced Large-Scale Video Generative Model

    Wan2.1 is a foundational open-source large-scale video generative model developed by the Wan team, providing high-quality video generation from text and images. It employs advanced diffusion-based architectures to produce coherent, temporally consistent videos with realistic motion and visual fidelity. Wan2.1 focuses on efficient video synthesis while maintaining rich semantic and aesthetic detail, enabling applications in content creation, entertainment, and research. The model supports text-to-video and image-to-video generation tasks with flexible resolution options suitable for various GPU hardware configurations. Wan2.1’s architecture balances generation quality and inference cost, paving the way for later improvements seen in Wan2.2 such as Mixture-of-Experts and enhanced aesthetics. It was trained on large-scale video and image datasets, providing generalization across diverse scenes and motion patterns.
    Downloads: 58 This Week
    Last Update:
    See Project
  • 15
    Demucs

    Demucs

    Code for the paper Hybrid Spectrogram and Waveform Source Separation

    Demucs (Deep Extractor for Music Sources) is a deep-learning framework for music source separation—extracting individual instrument or vocal tracks from a mixed audio file. The system is based on a U-Net-like convolutional architecture combined with recurrent and transformer elements to capture both short-term and long-term temporal structure. It processes raw waveforms directly rather than spectrograms, allowing for higher-quality reconstruction and fewer artifacts in separated tracks. The repository includes pretrained models for common tasks such as isolating vocals, drums, bass, and accompaniment from stereo music, achieving state-of-the-art results in benchmarks like MUSDB18. Demucs supports GPU-accelerated inference and can process multi-channel audio with chunked streaming for real-time or batch operation. It also provides training scripts and utilities to fine-tune on custom datasets, along with remixing and enhancement tools.
    Downloads: 55 This Week
    Last Update:
    See Project
  • 16
    ACE-Step 1.5

    ACE-Step 1.5

    The most powerful local music generation model

    ACE-Step 1.5 is an advanced open-source foundation model for AI-driven music generation that pushes beyond traditional limitations in speed, musical coherence, and controllability by innovating in architecture and training design. It integrates cutting-edge generative techniques—such as diffusion-based synthesis combined with compressed autoencoders and lightweight transformer elements—to produce high-quality full-length music tracks with rapid inference times, capable of generating a complete song in seconds on modern GPUs while remaining efficient enough to run on consumer-grade hardware with minimal memory requirements. Beyond straightforward text-to-music synthesis, ACE-Step 1.5 enables flexible creative workflows, including tasks like cover generation, editing existing tracks, transforming vocals to background accompaniment, and stylistic personalization using low-rank adaptation from just a few example songs.
    Downloads: 43 This Week
    Last Update:
    See Project
  • 17
    FLUX.2

    FLUX.2

    Official inference repo for FLUX.2 models

    FLUX.2 is a state-of-the-art open-weight image generation and editing model released by Black Forest Labs aimed at bridging the gap between research-grade capabilities and production-ready workflows. The model offers both text-to-image generation and powerful image editing, including editing of multiple reference images, with fidelity, consistency, and realism that push the limits of what open-source generative models have achieved. It supports high-resolution output (up to ~4 megapixels), which allows for photography-quality images, detailed product shots, infographics or UI mockups rather than just low-resolution drafts. FLUX.2 is built with a modern architecture (a flow-matching transformer + a revamped VAE + a strong vision-language encoder), enabling strong prompt adherence, correct rendering of text/typography in images, reliable lighting, layout, and physical realism, and consistent style/character/product identity across multiple generations or edits.
    Downloads: 40 This Week
    Last Update:
    See Project
  • 18
    HeartMuLa

    HeartMuLa

    A Family of Open Sourced Music Foundation Models

    HeartMuLa is the open-source library and reference implementation for the HeartMuLa family of music foundation models, designed to support both music generation and music-related understanding tasks in a cohesive stack. At the center is HeartMuLa, a music language model that generates music conditioned on inputs like lyrics and tags, with multilingual support that broadens the range of lyric-driven use cases. The project also includes HeartCodec, a music codec optimized for high reconstruction fidelity, enabling efficient tokenization and reconstruction workflows that are critical for training and generation pipelines. For text extraction from audio, it provides HeartTranscriptor, a Whisper-based model tuned specifically for lyrics transcription, which helps bridge generated or recorded audio back into structured text. It also introduces HeartCLAP, which aligns audio and text into a shared embedding space.
    Downloads: 39 This Week
    Last Update:
    See Project
  • 19
    LTX-2

    LTX-2

    Python inference and LoRA trainer package for the LTX-2 audio–video

    LTX-2 is a powerful, open-source toolkit developed by Lightricks that provides a modular, high-performance base for building real-time graphics and visual effects applications. It is architected to give developers low-level control over rendering pipelines, GPU resource management, shader orchestration, and cross-platform abstractions so they can craft visually compelling experiences without starting from scratch. Beyond basic rendering scaffolding, LTX-2 includes optimized math libraries, resource loaders, utilities for texture and buffer handling, and integration points for native event loops and input systems. The framework targets both interactive graphical applications and media-rich experiences, making it a solid foundation for games, creative tools, or visualization systems that demand both performance and flexibility. While being low-level, it also provides sensible defaults and helper abstractions that reduce boilerplate and help teams maintain clear, maintainable code.
    Downloads: 39 This Week
    Last Update:
    See Project
  • 20
    Qwen3-TTS

    Qwen3-TTS

    Qwen3-TTS is an open-source series of TTS models

    Qwen3-TTS is an open-source text-to-speech (TTS) project built around the Qwen3 large language model family, focused on generating high-quality, natural-sounding speech from plain text input. It provides researchers and developers with tools to transform text into expressive, intelligible audio, supporting multiple languages and voice characteristics tuned for clarity and fluidity. The project includes pre-trained models and inference scripts that let users synthesize speech locally or integrate TTS into larger pipelines such as voice assistants, accessibility tools, or multimedia generation workflows. Because it’s part of the broader Qwen ecosystem, it benefits from the model’s understanding of linguistic nuances, enabling more accurate pronunciation, prosody, and contextual delivery than many traditional TTS systems. Developers can customize voice output parameters like speed, pitch, and volume, and combine the TTS stack with other AI components.
    Downloads: 32 This Week
    Last Update:
    See Project
  • 21
    Hunyuan3D 2.0

    Hunyuan3D 2.0

    High-Resolution 3D Assets Generation with Large Scale Diffusion Models

    The Hunyuan3D-2 model, developed by Tencent, is designed for generating high-resolution 3D assets using large-scale diffusion models. This model offers advanced capabilities for creating detailed 3D models, including texture enhancements, multi-view shape generation, and rapid inference for real-time applications. It is particularly useful for industries requiring high-quality 3D content, such as gaming, film, and virtual reality. Hunyuan3D-2 supports various enhancements and is available for deployment through tools like Blender and Hugging Face. Includes a user-friendly production/studio tool (Hunyuan3D-Studio) to manipulate/animate meshes. Condition-aligned shape generation via the DiT model, so generated mesh is influenced by input images or prompts.
    Downloads: 29 This Week
    Last Update:
    See Project
  • 22
    DeepSeek Coder V2

    DeepSeek Coder V2

    DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models

    DeepSeek-Coder-V2 is the version-2 iteration of DeepSeek’s code generation models, refining the original DeepSeek-Coder line with improved architecture, training strategies, and benchmark performance. While the V1 models already targeted strong code understanding and generation, V2 appears to push further in both multilingual support and reasoning in code, likely via architectural enhancements or additional training objectives. The repository provides updated model weights, evaluation results on benchmarks (e.g. HumanEval, MultiPL-E, APPS), and new inference/serving scripts. Compared to the original, DeepSeek-Coder-V2 likely incorporates improved context management, caching strategies, or enhanced infilling capabilities. The project aims to provide a more performant and reliable open-source alternative to closed-source code models, optimized for practical usage in code completion, infilling, and code understanding across English and Chinese codebases.
    Downloads: 27 This Week
    Last Update:
    See Project
  • 23
    HY-World 1.5

    HY-World 1.5

    A Systematic Framework for Interactive World Modeling

    HY-WorldPlay is a Hunyuan AI project focusing on immersive multimodal content generation and interaction within virtual worlds or simulated environments. It aims to empower AI agents with the capability to both understand and generate multimedia content — including text, audio, image, and potentially 3D or game-world elements — enabling lifelike dialogue, environmental interpretations, and responsive world behavior. The platform targets use cases in digital entertainment, game worlds, training simulators, and interactive storytelling, where AI agents need to adapt to real-time user inputs and changes in environment state. It blends advanced reasoning with multimodal synthesis, enabling agents to describe scenes, generate context-appropriate responses, and contribute to narrative or gameplay flows. The underlying framework typically supports large-context state tracking across extended interactions, blending temporal and spatial multimodal signals.
    Downloads: 27 This Week
    Last Update:
    See Project
  • 24
    stable-diffusion.cpp

    stable-diffusion.cpp

    Diffusion model(SD,Flux,Wan,Qwen Image,Z-Image,...) inference

    stable-diffusion.cpp is a lightweight, high-performance implementation of Stable Diffusion and related generative models written entirely in portable C/C++, designed to run on virtually any device without heavy dependencies. It enables text-to-image and image-to-image generation, supports a growing set of models like SD1.x, SD2.x, SDXL, SD-Turbo, Qwen Image, and more, and is continually updated with support for cutting-edge model variants including video and image editing models. The project is built on the ggml backend, which allows efficient execution on CPUs and GPUs via backends like CUDA, Vulkan, Metal, OpenCL, and SYCL, making it suitable for everything from desktops to mobile devices. It includes options for ControlNet, LoRA models, upscaling via ESRGAN, and advanced sampling techniques, giving developers and users a rich toolkit for creative workflows.
    Downloads: 27 This Week
    Last Update:
    See Project
  • 25
    Qwen3-Coder

    Qwen3-Coder

    Qwen3-Coder is the code version of Qwen3

    Qwen3-Coder is the latest and most powerful agentic code model developed by the Qwen team at Alibaba Cloud. Its flagship version, Qwen3-Coder-480B-A35B-Instruct, features a massive 480 billion-parameter Mixture-of-Experts architecture with 35 billion active parameters, delivering top-tier performance on coding and agentic tasks. This model sets new state-of-the-art benchmarks among open models for agentic coding, browser-use, and tool-use, matching performance comparable to leading models like Claude Sonnet. Qwen3-Coder supports an exceptionally long context window of 256,000 tokens, extendable to 1 million tokens using Yarn, enabling repository-scale code understanding and generation. It is capable of handling 358 programming languages, from common to niche, making it versatile for a wide range of development environments. The model integrates a specially designed function call format and supports popular platforms such as Qwen Code and CLINE for agentic coding workflows.
    Downloads: 25 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next