Browse free open source Lua AI Models and projects below. Use the toggles on the left to filter open source Lua AI Models by OS, license, language, programming language, and project status.

  • Auth0 for AI Agents now in GA Icon
    Auth0 for AI Agents now in GA

    Ready to implement AI with confidence (without sacrificing security)?

    Connect your AI agents to apps and data more securely, give users control over the actions AI agents can perform and the data they can access, and enable human confirmation for critical agent actions.
    Start building today
  • Payments you can rely on to run smarter. Icon
    Payments you can rely on to run smarter.

    Never miss a sale. Square payment processing serves customers better with tools and integrations that make work more efficient.

    Accept payments at your counter or on the go. It’s easy to get started. Try the Square POS app on your phone or pick from a range of hardworking hardware.
    Learn More
  • 1
    CycleGAN

    CycleGAN

    Software that can generate photos from paintings

    CycleGAN — in its original form — is a landmark in deep learning for image-to-image translation without paired data. Rather than requiring matching image pairs between source and target domains (which are often hard or impossible to obtain), CycleGAN learns two mappings — one from domain A to B, and another back from B to A — along with a cycle-consistency loss that encourages the round-trip to reconstruct the original image. This innovation lets the model learn domain-to-domain translations like turning horses into zebras, changing seasons, or transforming photos into paintings, using only collections of images from each domain. The original implementation (in Torch) has since been complemented by other re-implementations (including in PyTorch), but the core idea remains: unpaired image-to-image translation. Because of its flexibility, CycleGAN has become one of the most widely adopted generative models for domain translation tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    fairseq-lua

    fairseq-lua

    Facebook AI Research Sequence-to-Sequence Toolkit

    fairseq-lua is the original Lua/Torch7 version of Facebook AI Research’s sequence modeling toolkit, designed for neural machine translation (NMT) and sequence generation. It introduced early attention-based architectures and training pipelines that later evolved into the modern PyTorch-based fairseq. The framework implements sequence-to-sequence models with attention, beam search decoding, and distributed training, providing a research platform for exploring translation, summarization, and language modeling. Its modular design made it easy to prototype new architectures by modifying encoders, decoders, or attention mechanisms. Although now deprecated in favor of the PyTorch rewrite, fairseq-lua played a key role in advancing large-scale NMT systems, such as early versions of Facebook’s production translation models. It remains an important historical reference for neural sequence learning frameworks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next