Showing 64 open source projects for "vision"

View related business solutions
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    Phi-3-MLX

    Phi-3-MLX

    Phi-3.5 for Mac: Locally-run Vision and Language Models

    Phi-3-Vision-MLX is an Apple MLX (machine learning on Apple silicon) implementation of Phi-3 Vision, a lightweight multi-modal model designed for vision and language tasks. It focuses on running vision-language AI efficiently on Apple hardware like M1 and M2 chips.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    DeepSeek VL2

    DeepSeek VL2

    Mixture-of-Experts Vision-Language Models for Advanced Multimodal

    DeepSeek-VL2 is DeepSeek’s vision + language multimodal model—essentially the next-gen successor to their first vision-language models. It combines image and text inputs into a unified embedding / reasoning space so that you can query with text and image jointly (e.g. “What’s going on in this scene?” or “Generate a caption appropriate to context”). The model supports both image understanding (vision tasks) and multimodal reasoning, and is likely used as a component in agent systems to process visual inputs as context for downstream tasks. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    MetaCLIP

    MetaCLIP

    ICLR2024 Spotlight: curation/training code, metadata, distribution

    ...The repository provides training logic, adaptation strategies (e.g. prompt tuning, adapter modules), and evaluation across base and target domains to measure how well the model retains its general knowledge while specializing as needed. It includes utilities to fine-tune vision-language embeddings, compute prompt or adapter updates, and benchmark across transfer and retention metrics. MetaCLIP is especially suited for real-world settings where a model must continuously incorporate new visual categories or domains over time.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Perception Models

    Perception Models

    State-of-the-art Image & Video CLIP, Multimodal Large Language Models

    ...It introduces two primary components: the Perception Encoder (PE) for visual feature extraction and the Perception Language Model (PLM) for multimodal decoding and reasoning. The PE module is a family of vision encoders designed to excel in image and video understanding, surpassing models like SigLIP2, InternVideo2, and DINOv2 across multiple benchmarks. Meanwhile, PLM integrates with PE to power vision-language modeling, achieving results competitive with leading multimodal systems such as QwenVL2.5 and InternVL3, all while being fully reproducible with open data. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    CogView4

    CogView4

    CogView4, CogView3-Plus and CogView3(ECCV 2024)

    ...The model also supports fine-tuning and downstream customization, extending its applicability to creative content generation, human–computer interaction, and research on vision-language alignment.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    DINOv3

    DINOv3

    Reference PyTorch implementation and models for DINOv3

    ...DINOv3 removes the need for complex augmentations or momentum encoders, streamlining the pipeline while maintaining or improving feature quality. The model supports multiple backbone architectures, including Vision Transformers (ViT), and can handle larger image resolutions with improved stability during training. The learned embeddings generalize robustly across tasks like classification, retrieval, and segmentation without fine-tuning, showing state-of-the-art transfer performance among self-supervised models.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 7
    DeepSeek VL

    DeepSeek VL

    Towards Real-World Vision-Language Understanding

    DeepSeek-VL is DeepSeek’s initial vision-language model that anchors their multimodal stack. It enables understanding and generation across visual and textual modalities—meaning it can process an image + a prompt, answer questions about images, caption, classify, or reason about visuals in context. The model is likely used internally as the visual encoder backbone for agent use cases, to ground perception in downstream tasks (e.g. answering questions about a screenshot).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    MiniMax-01

    MiniMax-01

    Large-language-model & vision-language-model based on Linear Attention

    ...MiniMax-VL-01 extends this core by adding a 303M-parameter Vision Transformer and a two-layer MLP projector in a ViT–MLP–LLM framework, allowing the model to process images at dynamic resolutions up to 2016×2016.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    FastVLM

    FastVLM

    This repository contains the official implementation of FastVLM

    FastVLM is an efficiency-focused vision-language modeling stack that introduces FastViTHD, a hybrid vision encoder engineered to emit fewer visual tokens and slash encoding time, especially for high-resolution images. Instead of elaborate pruning stages, the design trades off resolution and token count through input scaling, simplifying the pipeline while maintaining strong accuracy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    NVIDIA Isaac GR00T

    NVIDIA Isaac GR00T

    NVIDIA Isaac GR00T N1.5 is the world's first open foundation model

    NVIDIA Isaac‑GR00T N1.5 is an open-source foundation model engineered for generalized humanoid robot reasoning and manipulation skills. It accepts multimodal inputs—such as language and images—and uses a diffusion transformer architecture built upon vision-language encoders, enabling adaptive robot behaviors across diverse environments. It is designed to be customizable via post-training with real or synthetic data. The vision-language model remains frozen during both pretraining and finetuning, preserving language understanding and improving generalization. Streamlined MLP connection between vision encoder and LLM with added layer normalization.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Qwen-VL

    Qwen-VL

    Chat & pretrained large vision language model

    Qwen-VL is Alibaba Cloud’s vision-language large model family, designed to integrate visual and linguistic modalities. It accepts image inputs (with optional bounding boxes) and text, and produces text (and sometimes bounding boxes) as output. The model variants (VL-Plus, VL-Max, etc.) have been upgraded for better visual reasoning, text recognition from images, fine-grained understanding, and support for high image resolutions / extreme aspect ratios.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    GLM-4.1V

    GLM-4.1V

    GLM-4.6V/4.5V/4.1V-Thinking, towards versatile multimodal reasoning

    ...Though smaller in scale, GLM-4.1V maintains competitive performance, particularly impressive on many benchmarks for models of its size: in fact, on a number of multimodal reasoning and vision-language tasks it outperforms some much larger models from other families. It represents a trade-off: somewhat reduced capacity compared to 4.5V or 4.6V, but with benefits in terms of speed, deployability, and lower hardware requirements — making it especially useful for developers experimenting locally, building lightweight agents, or deploying on limited infrastructure. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    CogVLM

    CogVLM

    A state-of-the-art open visual language model

    ...The flagship CogVLM-17B combines ~10B visual parameters with ~7B language parameters and supports 490×490 inputs; CogAgent-18B extends this to 1120×1120 and adds plan/next-action outputs plus grounded operation coordinates for GUI tasks. The repo provides multiple ways to run models (CLI, web demo, and OpenAI-Vision–style APIs), along with quantization options that reduce VRAM needs (e.g., 4-bit). It includes checkpoints for chat, base, and grounding variants, plus recipes for model-parallel inference and LoRA fine-tuning. The documentation covers task prompts for general dialogue, visual grounding (box→caption, caption→box, caption+boxes), and GUI agent workflows that produce structured actions with bounding boxes.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 14
    DINOv2

    DINOv2

    PyTorch code and models for the DINOv2 self-supervised learning

    DINOv2 is a self-supervised vision learning framework that produces strong, general-purpose image representations without using human labels. It builds on the DINO idea of student–teacher distillation and adapts it to modern Vision Transformer backbones with a carefully tuned recipe for data augmentation, optimization, and multi-crop training. The core promise is that a single pretrained backbone can transfer well to many downstream tasks—from linear probing on classification to retrieval, detection, and segmentation—often requiring little or no fine-tuning. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Sapiens

    Sapiens

    High-resolution models for human tasks

    Sapiens is a research framework from Meta AI focused on embodied intelligence and human-like multimodal learning, aiming to train agents that can perceive, reason, and act in complex environments. It integrates sensory inputs such as vision, audio, and proprioception into a unified learning architecture that allows agents to understand and adapt to their surroundings dynamically. The project emphasizes long-horizon reasoning and cross-modal grounding—connecting language, perception, and action into a single agentic model capable of following abstract goals. It includes simulation environments, datasets, and benchmarks for testing grounded understanding, imitation learning, and decision-making. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Qwen-2.5-VL

    Qwen-2.5-VL

    Qwen2.5-VL is the multimodal large language model series

    Qwen2.5 is a series of large language models developed by the Qwen team at Alibaba Cloud, designed to enhance natural language understanding and generation across multiple languages. The models are available in various sizes, including 0.5B, 1.5B, 3B, 7B, 14B, 32B, and 72B parameters, catering to diverse computational requirements. Trained on a comprehensive dataset of up to 18 trillion tokens, Qwen2.5 models exhibit significant improvements in instruction following, long-text generation...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 17
    GLM-4.6V

    GLM-4.6V

    GLM-4.6V/4.5V/4.1V-Thinking, towards versatile multimodal reasoning

    GLM-4.6V represents the latest generation of the GLM-V family and marks a major step forward in multimodal AI by combining advanced vision-language understanding with native “tool-call” capabilities, long-context reasoning, and strong generalization across domains. Unlike many vision-language models that treat images and text separately or require intermediate conversions, GLM-4.6V allows inputs such as images, screenshots or document pages directly as part of its reasoning pipeline — and can output or act via tools seamlessly, bridging perception and execution. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 18
    VisualGLM-6B

    VisualGLM-6B

    Chinese and English multimodal conversational language model

    VisualGLM-6B is an open-source multimodal conversational language model developed by ZhipuAI that supports both images and text in Chinese and English. It builds on the ChatGLM-6B backbone, with 6.2 billion language parameters, and incorporates a BLIP2-Qformer visual module to connect vision and language. In total, the model has 7.8 billion parameters. Trained on a large bilingual dataset — including 30 million high-quality Chinese image-text pairs from CogView and 300 million English pairs — VisualGLM-6B is designed for image understanding, description, and question answering. Fine-tuning on long visual QA datasets further aligns the model’s responses with human preferences. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    Janus

    Janus

    Unified Multimodal Understanding and Generation Models

    Janus is a sophisticated open-source project from DeepSeek AI that aims to unify both visual understanding and image generation in a single model architecture. Rather than having separate systems for “look and describe” and “prompt and generate”, Janus uses an autoregressive transformer framework with a decoupled visual encoder—allowing it to ingest images for comprehension and to produce images from text prompts with shared internal representations. The design tackles long-standing...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    4M

    4M

    4M: Massively Multimodal Masked Modeling

    4M is a training framework for “any-to-any” vision foundation models that uses tokenization and masking to scale across many modalities and tasks. The same model family can classify, segment, detect, caption, and even generate images, with a single interface for both discriminative and generative use. The repository releases code and models for multiple variants (e.g., 4M-7 and 4M-21), emphasizing transfer to unseen tasks and modalities.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    MiniCPM-o

    MiniCPM-o

    A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming

    MiniCPM-o 2.6 is a cutting-edge multimodal large language model (MLLM) designed for high-performance tasks across vision, speech, and video. Capable of running on end-side devices such as smartphones and tablets, it provides powerful features like real-time speech conversation, video understanding, and multimodal live streaming. With 8 billion parameters, MiniCPM-o 2.6 surpasses its predecessors in versatility and efficiency, making it one of the most robust models available.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    GLM-4.5V

    GLM-4.5V

    GLM-4.6V/4.5V/4.1V-Thinking, towards versatile multimodal reasoning

    GLM-4.5V is the preceding iteration in the GLM-V series that laid much of the groundwork for general multimodal reasoning and vision-language understanding. It embodies the design philosophy of mixing visual and textual modalities into a unified model capable of general-purpose reasoning, content understanding, and generation, while already supporting a wide variety of tasks: from image captioning and visual question answering to content recognition, GUI-based agents, video understanding, and long-document interpretation. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    FLUX.2

    FLUX.2

    Official inference repo for FLUX.2 models

    ...It supports high-resolution output (up to ~4 megapixels), which allows for photography-quality images, detailed product shots, infographics or UI mockups rather than just low-resolution drafts. FLUX.2 is built with a modern architecture (a flow-matching transformer + a revamped VAE + a strong vision-language encoder), enabling strong prompt adherence, correct rendering of text/typography in images, reliable lighting, layout, and physical realism, and consistent style/character/product identity across multiple generations or edits.
    Downloads: 55 This Week
    Last Update:
    See Project
  • 24
    HunyuanOCR

    HunyuanOCR

    OCR expert VLM powered by Hunyuan's native multimodal architecture

    HunyuanOCR is an open-source, end-to-end OCR (optical character recognition) Vision-Language Model (VLM) developed by Tencent‑Hunyuan. It’s designed to unify the entire OCR pipeline, detection, recognition, layout parsing, information extraction, translation, and even subtitle or structured output generation, into a single model inference instead of a cascade of separate tools. Despite being fairly lightweight (about 1 billion parameters), it delivers state-of-the-art performance across a wide variety of OCR tasks, outperforming many traditional OCR systems and even other multimodal models on benchmark suites. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Step3-VL-10B

    Step3-VL-10B

    Multimodal model achieving SOTA performance

    Step3-VL-10B is an open-source multimodal foundation model developed by StepFun AI that pushes the boundaries of what compact models can achieve by combining visual and language understanding in a single architecture. Despite having only about 10 billion parameters, it delivers performance that rivals or even surpasses much larger models (10×–20× larger) on a wide range of multimodal benchmarks covering reasoning, perception, and complex tasks, positioning it as one of the most powerful...
    Downloads: 11 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next